Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837276

ABSTRACT

Diamond is an important material for electrical and electronic devices. Because the diamond is in contact with the metal in these applications, it becomes necessary to study the metal-diamond interaction and the structure of the interface, in particular, at elevated temperatures. In this work, we study the interaction of the (100) and (111) surfaces of a synthetic diamond single crystal with spattered titanium and molybdenum films. Atomic force microscopy reveals a uniform coating of titanium and the formation of flattened molybdenum nanoparticles. A thin titanium film is completely oxidized upon contact with air and passes from the oxidized state to the carbide state upon annealing in an ultrahigh vacuum at 800 °C. Molybdenum interacts with the (111) diamond surface already at 500 °C, which leads to the carbidization of its nanoparticles and catalytic graphitization of the diamond surface. This process is much slower on the (100) diamond surface; sp2-hybridized carbon is formed on the diamond and the top of molybdenum carbide nanoparticles, only when the annealing temperature is raised to 800 °C. The conductivity of the resulting sample is improved when compared to the Ti-coated diamond substrates and the Mo-coated (111) substrate annealed at 800 °C. The presented results could be useful for the development of graphene-on-diamond electronics.

2.
Nanotechnology ; 34(18)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36716476

ABSTRACT

We propose an original technique for the grating metasurfaces fabrication by low-power ultraviolet laser treatment of fluorinated graphene (FG) films with the focus on terahertz applications. The laser treatment reduces dielectric FG to its conductive counterparts, increasing DC conductivity to 170 S·m-1for treated areas. The electromagnetic response of the grating metasurfaces studied by THz time-domain spectroscopy in the 100 GHz-1 THz frequency range demonstrates enhanced resonant transmittance through metasurfaces. The intensity and position of transmittance peak could be tuned by changing the metasurface geometry, i.e. the period of the structure and width of the reduced and unreduced areas. In particular, the decrease of the reduced FG area width from 400 to 170µm leads to the shift of the resonance peak from 0.45 THz to the higher frequencies, 0.85 THz. Theoretical description based on the multipole theory supported by finite element numerical calculations confirms the excitation of the dark state in the metasurface unit cells comprising reduced and unreduced FG areas at resonance frequency determined by the structure geometrical features. Fabricated metasurfaces have been proved to be efficient narrowband polarizers being rotated by 50° about the incident THz field vector.

3.
Materials (Basel) ; 15(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36233981

ABSTRACT

Arrays of aligned carbon nanotubes (CNTs) are anisotropic nanomaterials possessing a high length-to-diameter aspect ratio, channels passing through the array, and mechanical strength along with flexibility. The arrays are produced in one step using aerosol-assisted catalytic chemical vapor deposition (CCVD), where a mixture of carbon and metal sources is fed into the hot zone of the reactor. Metal nanoparticles catalyze the growth of CNTs and, during synthesis, are partially captured into the internal cavity of CNTs. In this work, we considered various stages of multi-walled CNT (MWCNT) growth on silicon substrates from a ferrocene-toluene mixture and estimated the amount of iron in the array. The study showed that although the mixture of precursors supplies evenly to the reactor, the iron content in the upper part of the array is lower and increases toward the substrate. The size of carbon-encapsulated iron-based nanoparticles is 20-30 nm, and, according to X-ray diffraction data, most of them are iron carbide Fe3C. The reasons for the gradient distribution of iron nanoparticles in MWCNT arrays were considered, and the possibilities of controlling their distribution were evaluated.

4.
Materials (Basel) ; 14(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198489

ABSTRACT

The patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO2 laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power. Laser treatment does not destroy the alignment of MWCNTs while removing their poorly ordered external layers. The products of oxidative destruction of these layers deposit on the surfaces of newly produced arrays. The oxygen groups resulting from the CO2 laser treatment improve the wettability of nanotube arrays with an epoxy resin. We show that the patterned MWCNT arrays absorb the THz radiation more strongly than the as-synthesized arrays. Moreover, the pattern influences the frequency behavior of the absorbance.

5.
Materials (Basel) ; 13(19)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33020425

ABSTRACT

Vertically aligned carbon nanotube (CNT) arrays show potential for the development of planar low-voltage emission cathodes. The characteristics of cathodes can be improved by modifying their surface, e.g., by hydrogen plasma treatment, as was performed in this work. The surface of multi-walled CNT arrays grown on silicon substrates from toluene and ferrocene using catalytic chemical vapor deposition was treated in a high-pressure (~104 Pa) microwave reactor. The structure, composition, and current-voltage characteristics of the arrays were studied before and after hydrogen plasma treatment at various power values and durations. CNT tips were destroyed and catalytic iron was released from the CNT channels. The etching rate was influenced by iron particles that formed on the array surface. The lower emission threshold in the plasma-treated arrays than in the initial sample is explained by the amplification factor of the local electric field increasing due to graphene structures of unfolded nanotube layers that formed at the CNT tips.

SELECTION OF CITATIONS
SEARCH DETAIL
...