Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Vaccines (Basel) ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675791

ABSTRACT

Nanoparticles show great promise as a platform for developing vaccines for the prevention of infectious disease. We have been investigating a method whereby nanocapsules can be formulated from protein, such that the final capsules contain only the cross-linked protein itself. Such nanocapsules are made using a silica templating system and can be customised in terms of size and porosity. Here we compare the construction and characteristics of nanocapsules from four different proteins: one a model protein (ovalbumin) and three from infectious disease pathogens, namely the influenza virus, Helicobacter pylori and HIV. Two of the nanocapsules were assessed further. We confirm that nanocapsules constructed from the urease A subunit of H. pylori can reduce subsequent infection in a vaccinated mouse model. Further, we show that capsules constructed from the HIV gp120 protein can be taken up by dendritic cells in tissue culture and can be recognised by antibodies raised against the virus. These results point to the utility of this method in constructing protein-only nanocapsules from proteins of varying sizes and isoelectric points.

2.
Ann Neurol ; 94(4): 798-802, 2023 10.
Article in English | MEDLINE | ID: mdl-37493435

ABSTRACT

Here, we provide the first regional analysis of intact and defective HIV reservoirs within the brain. Brain tissue from both viremic and virally suppressed people with HIV (PWH) harbored HIV pol DNA in all regions tested, with lower levels present in basal ganglia and cerebellum relative to frontal white matter. Intact proviruses were primarily found in the frontal white matter but also detected in other brain regions of PWH, demonstrating frontal white matter as a major brain reservoir of intact, potentially replication competent HIV DNA that persists despite antiretroviral therapy. ANN NEUROL 2023;94:798-802.


Subject(s)
HIV Infections , HIV-1 , Humans , Proviruses/genetics , CD4-Positive T-Lymphocytes , HIV-1/genetics , Viral Load , HIV Infections/drug therapy , Brain
3.
AIDS ; 37(2): 247-257, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36541637

ABSTRACT

OBJECTIVES: Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS: Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS: Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION: Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.


Subject(s)
HIV Infections , Humans , Broadly Neutralizing Antibodies/therapeutic use , CD4-Positive T-Lymphocytes , env Gene Products, Human Immunodeficiency Virus/genetics , T-Lymphocyte Subsets , Anti-Retroviral Agents/therapeutic use , Immunoglobulin G , HIV Antibodies , Antibodies, Neutralizing
4.
Trends Microbiol ; 31(4): 393-404, 2023 04.
Article in English | MEDLINE | ID: mdl-36463019

ABSTRACT

Antiretroviral therapy (ART) reduces human immunodeficiency virus type 1 (HIV-1) infection, but selection of treatment-refractory variants remains a major challenge. HIV-1 encodes 16 canonical proteins, a small number of which are the singular targets of nearly all antiretrovirals developed to date. Cellular factors are increasingly being explored, which may present more therapeutic targets, more effectively target certain aspects of the viral replication cycle, and/or limit viral escape. Unlike most other positive-sense RNA viruses that encode at least one helicase, retroviruses are limited to the host repertoire. Accordingly, HIV-1 subverts DEAD-box helicase 3X (DDX3X) and numerous other cellular helicases of the Asp-Glu-x-Asp/His (DExD/H)-box family to service multiple aspects of its replication cycle. Here we review DDX3X and other DExD/H-box helicases in HIV-1 replication and their inhibition.


Subject(s)
DEAD-box RNA Helicases , HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , HIV-1/metabolism , Virus Replication/genetics
5.
Ann Neurol ; 92(4): 532-544, 2022 10.
Article in English | MEDLINE | ID: mdl-35867351

ABSTRACT

OBJECTIVE: Human immunodeficiency virus (HIV) persistence in blood and tissue reservoirs, including the brain, is a major barrier to HIV cure and possible cause of comorbid disease. However, the size and replication competent nature of the central nervous system (CNS) reservoir is unclear. Here, we used the intact proviral DNA assay (IPDA) to provide the first quantitative assessment of the intact and defective HIV reservoir in the brain of people with HIV (PWH). METHODS: Total, intact, and defective HIV proviruses were measured in autopsy frontal lobe tissue from viremic (n = 18) or virologically suppressed (n = 12) PWH. Total or intact/defective proviruses were measured by detection of HIV pol or the IPDA, respectively, through use of droplet digital polymerase chain reaction (ddPCR). HIV-seronegative individuals were included as controls (n = 6). RESULTS: Total HIV DNA was present at similar levels in brain tissues from untreated viremic and antiretroviral (ART)-suppressed individuals (median = 22.3 vs 26.2 HIV pol copies/106 cells), reflecting a stable CNS reservoir of HIV that persists despite therapy. Furthermore, 8 of 10 viremic and 6 of 9 virally suppressed PWH also harbored intact proviruses in the CNS (4.63 vs 12.7 intact copies/106 cells). Viral reservoirs in CNS and matched lymphoid tissue were similar in the composition of intact and/or defective proviruses, albeit at lower levels in the brain. Importantly, CNS resident CD68+ myeloid cells in virally suppressed individuals harbored HIV DNA, directly showing the presence of a CNS resident HIV reservoir. INTERPRETATION: Our results demonstrate the first evidence for an intact, potentially replication competent HIV reservoir in the CNS of virally suppressed PWH. ANN NEUROL 2022;92:532-544.


Subject(s)
HIV Infections , Proviruses , Anti-Retroviral Agents/therapeutic use , Brain , CD4-Positive T-Lymphocytes , DNA, Viral/genetics , DNA, Viral/therapeutic use , HIV Infections/drug therapy , Humans , Proviruses/genetics , Viral Load/methods
6.
Viruses ; 13(6)2021 06 18.
Article in English | MEDLINE | ID: mdl-34207354

ABSTRACT

Gene/cell therapies are promising strategies for the many presently incurable diseases. A key step in this process is the efficient delivery of genes and gene-editing enzymes to many cell types that may be resistant to lentiviral vector transduction. Herein we describe tuning of a lentiviral gene therapy platform to focus on genetic modifications of resting CD4+ T cells. The motivation for this was to find solutions for HIV gene therapy efforts. Through selection of the optimal viral envelope and further modification to its expression, lentiviral fusogenic delivery into resting CD4+ T cells exceeded 80%, yet Sterile Alpha Motif and HD domain 1 (SAMHD1) dependent and independent intracellular restriction factors within resting T cells then dominate delivery and integration of lentiviral cargo. Overcoming SAMHD1-imposed restrictions, only observed up to 6-fold increase in transduction, with maximal gene delivery and expression of 35%. To test if the biologically limiting steps of lentiviral delivery are reverse transcription and integration, we re-engineered lentiviral vectors to simply express biologically active mRNA to direct transgene expression in the cytoplasm. In this setting, we observed gene expression in up to 65% of resting CD4+ T cells using unconcentrated MS2 lentivirus-like particles (MS2-LVLPs). Taken together, our findings support a gene therapy platform that could be readily used in resting T cell gene editing.


Subject(s)
Gene Expression , Gene Transfer Techniques , Genetic Vectors/genetics , Lentivirus/genetics , Resting Phase, Cell Cycle , Transgenes , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Flow Cytometry , Genotype , Humans , T-Lymphocytes/metabolism , Transduction, Genetic
7.
Biomedicines ; 9(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808294

ABSTRACT

Ovarian cancer (OC) is one of the most common, and life-threatening gynaecological cancer affecting females. Almost 75% of all OC cases are diagnosed at late stages, where the 5-year survival rate is less than 30%. The aetiology of the disease is still unclear, and there are currently no screening method nor effective treatment strategies for the advanced disease. A growing body of evidence shows that human cytomegalovirus (HCMV) infecting more than 50% of the world population, may play a role in inducing carcinogenesis through its immunomodulatory activities. In healthy subjects, the primary HCMV infection is essentially asymptomatic. The virus then establishes a life-long chronic latency primarily in the hematopoietic progenitor cells in the bone marrow, with periodic reactivation from latency that is often characterized by high levels of circulating pro-inflammatory cytokines. Currently, infection-induced chronic inflammation is considered as an essential process for OC progression and metastasis. In line with this observation, few recent studies have identified high expressions of HCMV proteins on OC tissue biopsies that were associated with poor survival outcomes. Active HCMV infection in the OC tumour microenvironment may thus directly contribute to OC progression. In this review, we highlight the potential impact of HCMV infection-induced immunomodulatory effects on host immune responses to OC that may promote OC progression.

8.
Retrovirology ; 17(1): 24, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32762760

ABSTRACT

BACKGROUND: HIV-1 infects a wide range of CD4+ T cells with different phenotypic properties and differing expression levels of entry coreceptors. We sought to determine the viral tropism of subtype C (C-HIV) Envelope (Env) clones for different CD4+ T cell subsets and whether tropism changes during acute to chronic disease progression. HIV-1 envs were amplified from the plasma of five C-HIV infected women from three untreated time points; less than 2 months, 1-year and 3-years post-infection. Pseudoviruses were generated from Env clones, phenotyped for coreceptor usage and CD4+ T cell subset tropism was measured by flow cytometry. RESULTS: A total of 50 C-HIV envs were cloned and screened for functionality in pseudovirus infection assays. Phylogenetic and variable region characteristic analysis demonstrated evolution in envs between time points. We found 45 pseudoviruses were functional and all used CCR5 to mediate entry into NP2/CD4/CCR5 cells. In vitro infection assays showed transitional memory (TM) and effector memory (EM) CD4+ T cells were more frequently infected (median: 46% and 25% of total infected CD4+ T cells respectively) than naïve, stem cell memory, central memory and terminally differentiated cells. This was not due to these subsets contributing a higher proportion of the CD4+ T cell pool, rather these subsets were more susceptible to infection (median: 5.38% EM and 2.15% TM cells infected), consistent with heightened CCR5 expression on EM and TM cells. No inter- or intra-participant changes in CD4+ T cell subset tropism were observed across the three-time points. CONCLUSIONS: CD4+ T cell subsets that express more CCR5 were more susceptible to infection with C-HIV Envs, suggesting that these may be the major cellular targets during the first 3 years of infection. Moreover, we found that viral tropism for different CD4+ T cell subsets in vitro did not change between Envs cloned from acute to chronic disease stages. Finally, central memory, naïve and stem cell memory CD4+ T cell subsets were susceptible to infection, albeit inefficiently by Envs from all time-points, suggesting that direct infection of these cells may help establish the latent reservoir early in infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/virology , HIV-1/physiology , T-Lymphocyte Subsets/immunology , Viral Tropism , env Gene Products, Human Immunodeficiency Virus/metabolism , Adult , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Female , Genetic Variation , HIV Infections/immunology , HIV-1/classification , HIV-1/genetics , Humans , Immunologic Memory , Longitudinal Studies , Phylogeny , Receptors, HIV/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , env Gene Products, Human Immunodeficiency Virus/genetics
9.
EBioMedicine ; 53: 102682, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32114391

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) subtype C (C-HIV) is the most prevalent form of HIV-1 globally, accounting for approximately 50% of infections worldwide. C-HIV is the predominant and near-exclusive subtype in the low resource regions of India and Southern Africa. Given the vast diversity of HIV-1 subtypes, it is curious as to why C-HIV constitutes such a large proportion of global infections. This enriched prevalence may be due to phenotypic differences between C-HIV isolates and other viral strains that permit enhanced transmission efficiency or, pathogenicity, or might due to the socio-demographics of the regions where C-HIV is endemic. Here, we compare the mechanisms of C-HIV pathogenesis to less prominent HIV-1 subtypes, including viral genetic and phenotypic characteristics, and host genetic variability, to understand whether evolutionary factors drove C-HIV to predominance.


Subject(s)
HIV Infections/virology , HIV-1/genetics , Evolution, Molecular , Genome, Viral , HIV Infections/epidemiology , HIV Infections/transmission , HIV-1/pathogenicity , HIV-1/physiology , Humans , Virus Replication
10.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31852784

ABSTRACT

HIV can persist in people living with HIV (PLWH) on antiretroviral therapy (ART) in multiple CD4+ T cell subsets, including naive cells, central memory (CM) cells, transitional (TM) cells, and effector memory (EM) cells. Since these cells express different levels of the viral coreceptors CXCR4 and CCR5 on their surface, we sought to determine whether the HIV envelope protein (Env) was genotypically and phenotypically different between CD4+ T cell subsets isolated from PLWH on suppressive ART (n = 8). Single genome amplification for the HIV env gene was performed on genomic DNA extracts from different CD4+ T cell subsets. We detected CXCR4-using (X4) strains in five of the eight participants studied, and in these participants, the prevalence of X4 strains was higher in naive CD4+ T cells than in the memory subsets. Conversely, R5 strains were mostly found in the TM and EM populations. Identical sets of env sequences, consistent with clonal expansion of some infected cells, were more frequent in EM cells. These expanded identical sequences could also be detected in multiple CD4+ T cell subsets, suggesting that infected cells can undergo T cell differentiation. These identical sequences largely encoded intact and functional Env proteins. Our results are consistent with a model in which X4 HIV strains infect and potentially establish latency in naive and CM CD4+ T cells through direct infection, in addition to maintenance of the reservoir through differentiation and proliferation of infected cells.IMPORTANCE In people living with HIV (PLWH) on suppressive ART, latent HIV can be found in a diverse range of CD4+ T cells, including quiescent naive and central memory cells that are typically difficult to infect in vitro It is currently unclear how latency is established in these cells in vivo We show that in CD4+ T cells from PLWH on suppressive ART, the use of the coreceptor CXCR4 was prevalent among viruses amplified from naive and central memory CD4+ T cells. Furthermore, we found that expanded numbers of identical viral sequences were most common in the effector memory population, and these identical sequences were also found in multiple different CD4+ T cell subsets. Our results help to shed light on how a range of CD4+ T cell subsets come to harbor HIV DNA, which is one of the major barriers to eradicating the virus from PLWH.


Subject(s)
Anti-Retroviral Agents/administration & dosage , CD4-Positive T-Lymphocytes/immunology , HIV Infections , HIV-1/physiology , Immunologic Memory/drug effects , Receptors, CXCR4/immunology , Virus Latency/drug effects , HEK293 Cells , HIV Infections/drug therapy , HIV Infections/immunology , Humans
11.
Pathogens ; 8(3)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31461898

ABSTRACT

Chikungunya virus (CHIKV) is transmitted by Aedes mosquitoes and causes prolonged arthralgia in patients. After crossing the mosquito midgut barrier, the virus disseminates to tissues including the head and salivary glands. To better understand the interaction between Aedes albopictus and CHIKV, we performed RNASeq analysis on pools of mosquito heads and parts of the thorax 8 days post infection, which identified 159 differentially expressed transcripts in infected mosquitos compared to uninfected controls. After validation using RT-qPCR (reverse transcriptase-quantitative polymerase chain reaction), inhibitor of Bruton's tyrosine kinase (BTKi), which has previously been shown to be anti-inflammatory in mammals after viral infection, was further evaluated for its functional significance. Knockdown of BTKi using double-stranded RNA in a mosquito cell line showed no significant difference in viral RNA or infectivity titer. However, BTKi gene knocked-down cells showed increased apoptosis 24 hours post-infection compared with control cells, suggesting involvement of BTKi in the mosquito response to viral infection. Since BTK in mammals promotes an inflammatory response and has been shown to be involved in osteoclastogenesis, a hallmark of CHIKV pathogenesis, our results suggest a possible conserved mechanism at play between mosquitoes and mammals. Taken together, these results will add to our understanding of Aedes Albopictus interactions with CHIKV.

12.
J Virus Erad ; 5(2): 73-83, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31191910

ABSTRACT

BACKGROUND: Subject C135 is one of the members of the Sydney Blood Bank Cohort, infected in 1981 through transfusion with attenuated nef/3' long terminal repeat (LTR)-deleted HIV-1, and has maintained undetectable plasma viral load and steady CD4 cell count, in the absence of therapy. Uniquely, C135 combines five factors separately associated with control of viraemia: nef/LTR-deleted HIV-1, HLA-B57, HLA-DR13, heterozygous CCR5 Δ32 genotype and vigorous p24-stimulated peripheral blood mononuclear cell (PBMC) proliferation. Therefore, we studied in detail viral burden and immunological responses in this individual. METHODS: PBMC and gut and lymph node biopsy samples were analysed for proviral HIV-1 DNA by real-time and nested PCRs, and nef/LTR alleles by nested PCR. HIV-specific antibodies were studied by Western blotting, and CD4+ and CD8+ T lymphocyte responses were measured by proliferation and cytokine production in vitro. RESULTS: PBMC samples from 1996, but not since, showed amplification of nef alleles with gross deletions. Infectious HIV-1 was never recovered. Proviral HIV-1 DNA was not detected in recent PBMC or gut or lymph node biopsy samples. C135 has a consistently weak antibody response and a substantial CD4+ T cell proliferative response to a previously described HLA-DR13-restricted epitope of HIV-1 p24 in vitro, which augmented a CD8+ T cell response to an immunodominant HLA-B57-restricted epitope of p24, while his T cells show reduced levels of CCR5. CONCLUSIONS: Subject C135's early PCR and weak antibody results are consistent with limited infection with a poorly replicating nef/LTR-deleted strain of HIV-1. With his HLA-B57-restricted gag-specific CD8 and helper HLA-DR13-restricted CD4 T cell proliferative responses, C135 appears to have cleared his HIV-1 infection 37 years after transfusion.

13.
Viruses ; 11(6)2019 06 04.
Article in English | MEDLINE | ID: mdl-31167461

ABSTRACT

Chikungunya virus (CHIKV) is an emerging pathogen around the world and causes significant morbidity in patients. A single amino acid mutation in the envelope protein of CHIKV has led to a shift in vector preference towards Aedesalbopictus. While mosquitoes are known to mount an antiviral immune response post-infection, molecular interactions during the course of infection at the tissue level remain largely uncharacterised. We performed whole transcriptome analysis on dissected midguts of Aedes albopictus infected with CHIKV to identify differentially expressed genes. For this, RNA was extracted at two days post-infection (2-dpi) from pooled midguts. We initially identified 25 differentially expressed genes (p-value < 0.05) when mapped to a reference transcriptome. Further, multiple differentially expressed genes were identified from a custom de novo transcriptome, which was assembled using the reads that did not align with the reference genome. Thirteen of the identified transcripts, possibly involved in immunity, were validated by qRT-PCR. Homologues of seven of these genes were also found to be significantly upregulated in Aedes aegypti midguts 2 dpi, indicating a conserved mechanism at play. These results will help us to characterise the molecular interaction between Aedes albopictus and CHIKV and can be utilised to reduce the impact of this viral infection.


Subject(s)
Aedes/virology , Chikungunya virus , Intestines/virology , Mosquito Vectors/virology , Animals , Chikungunya Fever/transmission , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Chikungunya virus/metabolism , Gene Expression Profiling , Host-Pathogen Interactions , Humans , Immunity/genetics , Exome Sequencing
14.
AIDS ; 32(16): 2269-2278, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30005022

ABSTRACT

OBJECTIVES: This study investigated whether Env-mediated fusion levels of R5X4 viruses are associated with long-term survival of an infected CCR5-/- patient. DESIGN: Four R5X4 Envs were cloned from each of two infected homosexual individuals (DR and C2) homozygous for the CCR5Δ32 allele. DR is a long-term survivor chronically infected with HIV-1 and his Envs were cloned 12 years after testing HIV-infected, whereas C2 Envs were isolated 1 year after primary infection. METHODS: The current study sequenced the gp41 subunits and created hybrid Envs that contained exchanged gp41 subunits or V3 loops. The Env-mediated fusion activity of Envs was examined in cell fusion and virus infection assays. RESULTS: Sequence analysis indicated novel polymorphisms in the gp41 subunits of C2 and DR, and revealed sequence homology between DR and certain long-term nonprogressors. The DR Envs consistently showed lower Env-mediated fusion, smaller size, and delayed onset of syncytia formation. Envs containing swapped gp41 regions resulted in the transfer of most of the fusion phenotype and in the shift of the inhibition concentration 50 (IC50) of the inhibitory T20 peptide. In contrast, Envs with swapped V3 domains resulted in the partial transfer of the fusion phenotype and no significant change in the IC50 of T20. CONCLUSIONS: Env sequence polymorphisms identified two distinct fusion phenotypes isolated from infected CCR5-/- patients. Swapping experiments confirmed DR's low fusion phenotype. Env-mediated fusion is a critical factor among others contributing to long-term survival.


Subject(s)
HIV Infections/pathology , HIV Long-Term Survivors , HIV-1/genetics , HIV-1/isolation & purification , Receptors, CCR5/deficiency , Virus Internalization , HIV Envelope Protein gp41/genetics , HIV Infections/virology , HIV-1/physiology , Humans , Male , Polymorphism, Genetic , Sequence Analysis, DNA
15.
J Gene Med ; 20(2-3): e3006, 2018 02.
Article in English | MEDLINE | ID: mdl-29552747

ABSTRACT

BACKGROUND: The gene therapeutic Cal-1 comprises the anti-HIV agents: (i) sh5, a short hairpin RNA to CCR5 that down-regulates CCR5 expression and (ii) maC46 (C46), a peptide that inhibits viral fusion with the cell membrane. These constructs were assessed for inhibition of viral replication and selective cell expansion in a number of settings. METHODS: HIV replication, selective outgrowth and cell surface viral binding were analysed with a single cycle infection assay of six pseudotyped HIV strains and a static and longitudinal passaging of MOLT4/CCR5 cells with HIV. Pronase digestion of surface virus and fluorescence microscopy assessed interactions between HIV virions and transduced cells. RESULTS: Cal-1 reduced CCR5 expression in peripheral blood mononuclear cells to CCR5Δ32 heterozygote levels. Even low level transduction resulted in significant preferential expansion in MOLT4/CCR5 gene-containing cells over a 3-week HIV challenge regardless of viral suppression [12.5% to 47.0% (C46), 46.7% (sh5), 62.2% (Dual), respectively]. The sh5 and Dual constructs at > 95% transduction also significantly suppressed virus to day 12 in the passage assay and all constructs, at varying percentage transduction inhibited virus in static culture. No escape mutations were present through 9 weeks of challenge. The Dual construct significantly suppressed infection by a panel of CCR5-using viruses, with its efficacy being independently determined from the single constructs. Dual and sh5 inhibited virion internalisation, as determined via pronase digestion of surface bound virus, by 70% compared to 13% for C46. CONCLUSIONS: The use of two anti-HIV genes allows optimal preferential survival and inhibition of HIV replication, with the impact on viral load being dependent on the percentage of gene marked cells.


Subject(s)
Genetic Therapy , HIV Infections/therapy , Receptors, CCR5/genetics , Recombinant Fusion Proteins/genetics , Gene Expression Regulation/genetics , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Leukocytes, Mononuclear/virology , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Transduction, Genetic , Viral Load/genetics , Virus Replication/genetics
16.
AIDS Res Hum Retroviruses ; 33(12): 1220-1235, 2017 12.
Article in English | MEDLINE | ID: mdl-28797170

ABSTRACT

Maraviroc (MVC) is an allosteric inhibitor of human immunodeficiency virus type 1 (HIV-1) entry, and is the only CCR5 antagonist licensed for use as an anti-HIV-1 therapeutic. It acts by altering the conformation of the CCR5 extracellular loops, rendering CCR5 unrecognizable by the HIV-1 envelope (Env) glycoproteins. This study aimed to understand the mechanisms underlying the development of MVC resistance in HIV-1-infected patients. To do this, we obtained longitudinal plasma samples from eight subjects who experienced treatment failure with phenotypically verified, CCR5-tropic MVC resistance. We then cloned and characterized HIV-1 Envs (n = 77) from plasma of pretreatment (n = 36) and treatment failure (n = 41) samples. Our results showed variation in the magnitude of MVC resistance as measured by reductions in maximal percent inhibition of Env-pseudotyped viruses, which was more pronounced in 293-Affinofile cells compared to other cells with similar levels of CCR5 expression. Amino acid determinants of MVC resistance localized to the V3 Env region and were strain specific. We also observed minimal cross-resistance to other CCR5 antagonists by MVC-resistant strains. We conclude that 293-Affinofile cells are highly sensitive for detecting and measuring MVC resistance through a mechanism that is CCR5-dependent yet independent of CCR5 expression levels. The strain-specific nature of resistance mutations suggests that sequence-based diagnostics and prognostics will need to be more sophisticated than simple position scoring to be useful for managing resistance in subjects taking MVC. Finally, the minimal levels of cross-resistance suggests that recognition of the MVC-modified form of CCR5 does not necessarily lead to recognition of other antagonist-modified forms of CCR5.


Subject(s)
Anti-HIV Agents/therapeutic use , CCR5 Receptor Antagonists/therapeutic use , Cyclohexanes/therapeutic use , Drug Resistance, Viral/genetics , HIV Envelope Protein gp120/genetics , HIV Infections/drug therapy , Receptors, CCR5/drug effects , Triazoles/therapeutic use , Adult , CD4 Lymphocyte Count , Cell Line , Female , HEK293 Cells , HIV-1/drug effects , HIV-1/genetics , Humans , Male , Maraviroc , Middle Aged , Treatment Failure , Virus Internalization/drug effects
17.
Front Immunol ; 8: 376, 2017.
Article in English | MEDLINE | ID: mdl-28484447

ABSTRACT

BACKGROUND: T follicular helper (Tfh) cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4+ T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells. METHODOLOGY: Tfh and other CD4+ T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV+ subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay. RESULTS: Phylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV+ subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5+PD-1intermediate(int)+ memory CD4+ T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1int cells survive, carry SIV provirus, and differentiate into PD-1hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5+ Tfh and pre-Tfh cells from human tonsils. CONCLUSION: The major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population. As the generation of Tfh are important for establishing effective immune responses during primary infections, Tfh are likely to be an early target of HIV-1 following transmission, creating an important component of the reservoir that has the potential to expand over time.

18.
Retrovirology ; 13(1): 74, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27809912

ABSTRACT

BACKGROUND: Entry of human immunodeficiency virus type 1 (HIV-1) into cells involves the interaction of the viral gp120 envelope glycoproteins (Env) with cellular CD4 and a secondary coreceptor, which is typically one of the chemokine receptors CCR5 or CXCR4. CCR5-using (R5) HIV-1 strains that display reduced sensitivity to CCR5 antagonists can use antagonist-bound CCR5 for entry. In this study, we investigated whether naturally occurring gp120 alterations in HIV-1 subtype C (C-HIV) variants exist in antiretroviral therapy (ART)-naïve subjects that may influence their sensitivity to the CCR5 antagonist maraviroc (MVC). RESULTS: Using a longitudinal panel of 244 R5 Envs cloned from 20 ART-naïve subjects with progressive C-HIV infection, we show that 40% of subjects (n = 8) harbored viruses that displayed incomplete inhibition by MVC, as shown by plateau's of reduced maximal percent inhibitions (MPIs). Specifically, when pseudotyped onto luciferase reporter viruses, 16 Envs exhibited MPIs below 98% in NP2-CCR5 cells (range 79.7-97.3%), which were lower still in 293-Affinofile cells that were engineered to express high levels of CCR5 (range 15.8-72.5%). We further show that Envs exhibiting reduced MPIs to MVC utilized MVC-bound CCR5 less efficiently than MVC-free CCR5, which is consistent with the mechanism of resistance to CCR5 antagonists that can occur in patients failing therapy. Mutagenesis studies identified strain-specific mutations in the gp120 V3 loop that contributed to reduced MPIs to MVC. CONCLUSIONS: The results of our study suggest that some ART-naïve subjects with C-HIV infection harbor HIV-1 with reduced MPIs to MVC, and demonstrate that the gp120 V3 loop region contributes to this phenotype.


Subject(s)
CCR5 Receptor Antagonists/pharmacology , Cyclohexanes/pharmacology , HIV Envelope Protein gp120/genetics , HIV-1/drug effects , Peptide Fragments/genetics , Receptors, CCR5/metabolism , Triazoles/pharmacology , Antiretroviral Therapy, Highly Active , CD4 Antigens/metabolism , HEK293 Cells , HIV Envelope Protein gp120/chemistry , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , HIV-1/physiology , Humans , Maraviroc , Mutagenesis , Peptide Fragments/chemistry , Virus Internalization
19.
J Biol Chem ; 291(24): 12641-12657, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27036939

ABSTRACT

CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.


Subject(s)
Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Animals , Antibody Specificity/immunology , Binding Sites/immunology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/immunology , Cells, Cultured , Crystallography, X-Ray , Epitope Mapping , HEK293 Cells , HIV Infections/immunology , HIV Infections/prevention & control , HL-60 Cells , Humans , Jurkat Cells , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Models, Molecular , Protein Binding/immunology , Protein Domains , Receptors, CXCR4/metabolism , Single-Domain Antibodies/chemistry , Surface Plasmon Resonance
20.
Sci Rep ; 6: 24883, 2016 04 29.
Article in English | MEDLINE | ID: mdl-27126912

ABSTRACT

Antiretroviral treatment of Human Immunodeficiency Virus type-1 (HIV-1) infections with CCR5-antagonists requires the co-receptor usage prediction of viral strains. Currently available tools are mostly designed based on subtype B strains and thus are in general not applicable to non-B subtypes. However, HIV-1 infections caused by subtype B only account for approximately 11% of infections worldwide. We evaluated the performance of several sequence-based algorithms for co-receptor usage prediction employed on subtype A V3 sequences including circulating recombinant forms (CRFs) and subtype C strains. We further analysed sequence profiles of gp120 regions of subtype A, B and C to explore functional relationships to entry phenotypes. Our analyses clearly demonstrate that state-of-the-art algorithms are not useful for predicting co-receptor tropism of subtype A and its CRFs. Sequence profile analysis of gp120 revealed molecular variability in subtype A viruses. Especially, the V2 loop region could be associated with co-receptor tropism, which might indicate a unique pattern that determines co-receptor tropism in subtype A strains compared to subtype B and C strains. Thus, our study demonstrates that there is a need for the development of novel algorithms facilitating tropism prediction of HIV-1 subtype A to improve effective antiretroviral treatment in patients.


Subject(s)
Computational Biology/methods , Genotype , Genotyping Techniques/methods , HIV Envelope Protein gp120/genetics , HIV-1/genetics , HIV-1/physiology , Viral Tropism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...