Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38787262

ABSTRACT

Enteroviruses (EV) are important pathogens causing human disease with various clinical manifestations. To date, treatment of enteroviral infections is mainly supportive since no vaccination or antiviral drugs are approved for their prevention or treatment. Here, we describe the antiviral properties and mechanisms of action of leucoverdazyls-novel heterocyclic compounds with antioxidant potential. The lead compound, 1a, demonstrated low cytotoxicity along with high antioxidant and virus-inhibiting activity. A viral strain resistant to 1a was selected, and the development of resistance was shown to be accompanied by mutation of virus-specific non-structural protein 2C. This resistant virus had lower fitness when grown in cell culture. Taken together, our results demonstrate high antiviral potential of leucoverdazyls as novel inhibitors of enterovirus replication and support previous evidence of an important role of 2C proteins in EV replication.

2.
Viruses ; 15(1)2023 01 12.
Article in English | MEDLINE | ID: mdl-36680256

ABSTRACT

In the human gut, temperate bacteriophages interact with bacteria through predation and horizontal gene transfer. Relying on taxonomic data, metagenomic studies have associated shifts in phage abundance with a number of human diseases. The temperate bacteriophage VEsP-1 with siphovirus morphology was isolated from a sample of river water using Enterococcus faecalis as a host. Starting from the whole genome sequence of VEsP-1, we retrieved related phage genomes in blastp searches of the tail protein and large terminase sequences, and blastn searches of the whole genome sequences, with matches compiled from several different databases, and visualized a part of viral dark matter sequence space. The genome network and phylogenomic analyses resulted in the proposal of a novel genus "Vespunovirus", consisting of temperate, mainly metagenomic phages infecting Enterococcus spp.


Subject(s)
Bacteriophages , Humans , Enterococcus/genetics , Genome, Viral , Sequence Analysis, DNA , Phylogeny , Myoviridae/genetics
3.
Viruses ; 14(4)2022 04 16.
Article in English | MEDLINE | ID: mdl-35458561

ABSTRACT

The rapid emergence of antibiotic resistance is of major concern globally. Among the most worrying pathogenic bacteria are vancomycin-resistant enterococci. Phage therapy is a highly promising method for controlling enterococcal infections. In this study, we described two virulent tailed bacteriophages possessing lytic activity against Enterococcus faecalis and E. faecium isolates. The SSsP-1 bacteriophage belonged to the Saphexavirus genus of the Siphoviridae family, and the GVEsP-1 bacteriophage belonged to the Schiekvirus genus of Herelleviridae. The genomes of both viruses carried putative components of anti-CRISPR systems and did not contain known genes coding for antibiotic-resistance determinants and virulence factors. The conservative arrangement of protein-coding sequences in Saphexavirus and Schiekvirus genomes taken together with positive results of treating enterococcal peritonitis in an animal infection model imply the potential suitability of GVEsP-1 and SSsP-1 bacteriophages for clinical applications.


Subject(s)
Bacteriophages , Gram-Positive Bacterial Infections , Phage Therapy , Siphoviridae , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteriophages/genetics , Enterococcus , Enterococcus faecalis/genetics , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests , Siphoviridae/genetics
4.
Sci Rep ; 9(1): 18240, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796757

ABSTRACT

Meglumine acridone acetate (MA) is used in Russia for the treatment of influenza and other acute respiratory viral infections. It was assumed, until recently, that its antiviral effect was associated with its potential ability to induce type I interferon. Advanced studies, however, have shown the failure of 10-carboxymethyl-9-acridanone (CMA) to activate human STING. As such, MA's antiviral properties are still undergoing clarification. To gain insight into MA's mechanisms of action, we carried out RNA-sequencing analysis of global transcriptomes in MA-treated (MA+) human peripheral blood mononuclear cells (PBMCs). In response to treatment, approximately 1,223 genes were found to be differentially expressed, among which 464 and 759 were identified as either up- or down-regulated, respectively. To clarify the cellular and molecular processes taking place in MA+ cells, we performed a functional analysis of those genes. We have shown that evident MA subcellular localizations are: at the nuclear envelope; inside the nucleus; and diffusely in perinuclear cytoplasm. Postulating that MA may be a nuclear receptor agonist, we carried out docking simulations with PPARα and RORα ligand binding domains including prediction and molecular dynamics-based analysis of potential MA binding poses. Finally, we confirmed that MA treatment enhanced nuclear apoptosis in human PBMCs. The research presented here, in our view, indicates that: (i) MA activity is mediated by nuclear receptors; (ii) MA is a possible PPARα and/or RORα agonist; (iii) MA has an immunosuppressive effect; and (iv) MA induces apoptosis through the mitochondrial signaling pathway.


Subject(s)
Acridines/pharmacology , Apoptosis/drug effects , Leukocytes, Mononuclear/drug effects , Mitochondria/drug effects , Acridones/pharmacology , Cell Membrane Permeability/drug effects , Gene Expression/drug effects , Gene Expression Profiling , Humans , Meglumine/pharmacology , Membrane Potential, Mitochondrial/drug effects , Metabolic Networks and Pathways/drug effects , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA
5.
Antiviral Res ; 158: 147-160, 2018 10.
Article in English | MEDLINE | ID: mdl-30092251

ABSTRACT

In the present study, a highly effective carrier system has been developed for the delivery of antiviral siRNA mixtures. The developed hybrid microcarriers, made of biodegradable polymers and SiO2 nanostructures, more efficiently mediate cellular uptake of siRNA than commercially available liposome-based reagents and polyethyleneimine (PEI); they also demonstrate low in vitro toxicity and protection of siRNA from RNase degradation. A series of siRNA designs (targeting the most conserved regions of three influenza A virus (IAV) genes: NP, NS, and PA) were screened in vitro using RT-qPCR, ELISA analysis, and hemagglutination assay. Based on the results of screening, the three most effective siRNAs (PA-1630, NP-717, and NS-777) were selected for in situ encapsulation into hybrid microcarriers. It was revealed that pre-treatment of cells with a mixture of PA-1630, NP-717, and NS-777 siRNAs, delivered by hybrid microcarriers, provided stronger inhibition of viral M1 mRNA expression and control of NP protein level, after viral infection, than single pre-treatment by any of three encapsulated siRNAs used in the study. Moreover, the effective inhibition of replication in several IAV subtypes (H1N1, H1N1pdm, H5N2, and H7N9) using a cocktail of the three selected siRNAs, delivered by our hybrid capsules to the cells, was achieved. In conclusion, we have developed a proof-of-principle which shows that our hybrid microcarrier technology (utilizing a therapeutic siRNA cocktail) may represent a promising approach in anti-influenza therapy.


Subject(s)
Antiviral Agents/pharmacology , Drug Delivery Systems/methods , Influenza A virus/drug effects , Influenza A virus/genetics , RNA, Small Interfering/pharmacology , RNA-Binding Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Core Proteins/genetics , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , A549 Cells , Animals , Cell Line , Cell Survival/drug effects , Dogs , Epithelial Cells , Gene Expression Regulation, Viral/drug effects , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H7N9 Subtype/genetics , Influenza A virus/pathogenicity , Liposomes , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Nucleocapsid Proteins , Polyethyleneimine , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/metabolism , Silicon Dioxide , Viral Core Proteins/metabolism , Viral Matrix Proteins , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism , Virus Replication/drug effects
6.
J Cell Mol Med ; 22(1): 521-532, 2018 01.
Article in English | MEDLINE | ID: mdl-29148209

ABSTRACT

The sinoatrial node (SAN) is composed mostly of pacemaker, transitional and Purkinje-like cells. Pacemaker cells, especially in the centre of the SAN, are surrounded by dense fibrous tissue and do not have any contact with transitional cells. We hypothesize that the SAN contains telocytes that have contacts with pacemaker cells and contractile myocardium. Immunohistochemistry using antibodies against HCN4 and antibody combinations against CD34 and HCN4 was carried out on 12 specimens. Confocal laser scanning microscopy (CLSM) with two mixtures of primary antibodies, namely CD34/S100 and vimentin/S100, was performed in three cases. In two cases, CLSM was carried out with CD117 antibody. Specimens for electron microscopy and immunocytochemistry with HCN4 immunogold labelling were taken from another three patients. In our study, we found cells with the immunophenotype of telocytes in the SAN. There were twice as many of these cells in the centre of the SAN as in the periphery (20.3 ± 4.8 versus 10.8 ± 4.4 per high-power field). They had close contact with pacemaker cells and contractile cardiomyocytes and expressed HCN4. The ultrastructural characteristics of these cells are identical to those of telocytes observed earlier in other organs. Our study provides evidence that telocytes are present in the SAN.


Subject(s)
Sinoatrial Node/cytology , Telocytes/cytology , Adult , Aged , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Female , Humans , Male , Middle Aged , Sinoatrial Node/ultrastructure , Telocytes/ultrastructure
7.
Int J Nanomedicine ; 12: 593-603, 2017.
Article in English | MEDLINE | ID: mdl-28144141

ABSTRACT

Over the last decade, magnetic iron oxide nanoparticles (IONPs) have drawn much attention for their potential biomedical applications. However, serious in vitro and in vivo safety concerns continue to exist. In this study, the effects of uncoated, FemOn-SiO2 composite flake-like, and SiO2-FemOn core-shell IONPs on cell viability, function, and morphology were tested 48 h postincubation in human umbilical vein endothelial cell culture. Cell viability and apoptosis/necrosis rate were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin V-phycoerythrin kit, respectively. Cell morphology was evaluated using bright-field microscopy and forward and lateral light scattering profiles obtained with flow cytometry analysis. All tested IONP types were used at three different doses, that is, 0.7, 7.0, and 70.0 µg. Dose-dependent changes in cell morphology, viability, and apoptosis rate were shown. At higher doses, all types of IONPs caused formation of binucleated cells suggesting impaired cytokinesis. FemOn-SiO2 composite flake-like and SiO2-FemOn core-shell IONPs were characterized by similar profile of cytotoxicity, whereas bare IONPs were shown to be less toxic. The presence of either silica core or silica nanoflakes in composite IONPs can promote cytotoxic effects.


Subject(s)
Magnetite Nanoparticles/toxicity , Nanocomposites/toxicity , Silicon Dioxide/toxicity , Apoptosis/drug effects , Cell Death/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Magnetite Nanoparticles/ultrastructure
8.
Vaccine ; 33(29): 3398-406, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25976545

ABSTRACT

A long-term objective when designing influenza vaccines is to create one with broad cross-reactivity that will provide effective control over influenza, no matter which strain has caused the disease. Here we summarize the results from an investigation into the immunogenic and protective capacities inherent in variations of a recombinant protein, HBc/4M2e. This protein contains four copies of the ectodomain from the influenza virus protein M2 (M2e) fused within the immunodominant loop of the hepatitis B virus core antigen (HBc). Variations of this basic design include preparations containing M2e from the consensus human influenza virus; the M2e from the highly pathogenic avian A/H5N1 virus and a combination of two copies from human and two copies from avian influenza viruses. Intramuscular delivery in mice with preparations containing four identical copies of M2e induced high IgG titers in blood sera and bronchoalveolar lavages. It also provoked the formation of memory T-cells and antibodies were retained in the blood sera for a significant period of time post immunization. Furthermore, these preparations prevented the death of 75-100% of animals, which were challenged with lethal doses of virus. This resulted in a 1.2-3.5 log10 decrease in viral replication within the lungs. Moreover, HBc particles carrying only "human" or "avian" M2e displayed cross-reactivity in relation to human (A/H1N1, A/H2N2 and A/H3N2) or A/H5N1 and A(H1N1)pdm09 viruses, respectively; however, with the particles carrying both "human" and "avian" M2e this effect was much weaker, especially in relation to influenza virus A/H5N1. It is apparent from this work that to quickly produce vaccine for a pandemic it would be necessary to have several variations of a recombinant protein, containing four copies of M2e (each one against a group of likely influenza virus strains) with these relevant constructs housed within a comprehensive collection Escherichia coli-producers and maintained ready for use.


Subject(s)
Cross Protection , Epitopes/immunology , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Viral Matrix Proteins/immunology , Animals , Antibodies, Viral/analysis , Antibodies, Viral/blood , Blood/immunology , Bronchoalveolar Lavage Fluid/immunology , Cross Reactions , Disease Models, Animal , Epitopes/genetics , Escherichia coli/genetics , Female , Gene Expression , Hepatitis B Core Antigens/genetics , Immunoglobulin G/analysis , Immunoglobulin G/blood , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Lung/virology , Mice, Inbred BALB C , Mutagenesis, Insertional , Orthomyxoviridae Infections/prevention & control , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Survival Analysis , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Load , Viral Matrix Proteins/genetics
9.
PLoS One ; 9(11): e113343, 2014.
Article in English | MEDLINE | ID: mdl-25412099

ABSTRACT

BACKGROUND: There is a paucity of information on structural organization of muscular bundles in the interatrial septum (IAS). The aim was to investigate histologic and ultrastructural organization of muscular bundles in human IAS, including fossa ovalis (FO) and flap valve. METHODS: Macroscopic and light microscopy evaluations of IAS were performed from postmortem studies of 40 patients. Twenty three IAS specimens underwent serial transverse sectioning, and 17--longitudinal sectioning. The transverse sections from 10 patients were immunolabeled for HCN4, Caveolin3 and Connexin43. IAS specimens from 6 other patients underwent electron microscopy. RESULTS: In all IAS specimens sections the FO, its rims and the flap valve had muscle fibers consisting of working cardiac myocytes. Besides the typical cardiomyocytes there were unusual cells: tortuous and horseshoe-shaped intertangled myocytes, small and large rounded myocytes with pale cytoplasm. The cells were aggregated in a definite structure in 38 (95%) cases, which was surrounded by fibro-fatty tissue. The height of the structure on transverse sections positively correlated with age (P = 0.03) and AF history (P = 0.045). Immunohistochemistry showed positive staining of the cells for HCN4 and Caveolin3. Electron microscopy identified cells with characteristics similar to electrical conduction cells. CONCLUSIONS: Specialized conduction cells in human IAS have been identified, specifically in the FO and its flap valve. The cells are aggregated in a structure, which is surrounded by fibrous and fatty tissue. Further investigations are warranted to explore electrophysiological characteristics of this structure.


Subject(s)
Atrial Septum/pathology , Adult , Aged , Atrial Septum/metabolism , Atrial Septum/ultrastructure , Caveolin 3/immunology , Caveolin 3/metabolism , Connexin 43/immunology , Connexin 43/metabolism , Female , Heart Valves/metabolism , Heart Valves/pathology , Heart Valves/ultrastructure , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/immunology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Immunohistochemistry , Longitudinal Studies , Male , Microscopy, Electron , Middle Aged , Muscle Proteins/immunology , Muscle Proteins/metabolism , Potassium Channels/immunology , Potassium Channels/metabolism
10.
Prion ; 8(5): 369-73, 2014.
Article in English | MEDLINE | ID: mdl-25551549

ABSTRACT

The fibrillogenesis of a peptide corresponding to residues 35-51 of human α-lactalbumin (¹GYDTQAIVENNESTEYG¹7) can be dramatically enhanced by the addition of a tetrapeptide TDYG homologous to its C-terminus (TEYG). Generation of spontaneous hydrolytic products similar to this peptide was demonstrated by mass-spectrometry analysis of GYDTQAIVENNESTEYG peptide solution components during fibrillogenesis. Possible mechanisms and roles of short peptides in protein metabolism are discussed.


Subject(s)
Amyloid/genetics , Mutation , Amino Acid Sequence , Amyloid/chemistry , Amyloid/ultrastructure , Humans , Microscopy, Electron, Transmission , Molecular Sequence Data , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...