Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
J Med Chem ; 65(7): 5593-5605, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35298158

ABSTRACT

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC50 values remained in sub-nM range. Studies in minipig and dog demonstrated that IRPAs had sufficient efficacy to normalize plasma glucose levels in diabetes, while providing reduction of hypoglycemia risk. IRPAs had a prolonged duration of action, potentially making them suitable for once-daily dosing. Two lead compounds with %Max values of 30 and 40% relative to native insulin were selected for follow up studies in the clinic.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Animals , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Dogs , Hypoglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Receptor, Insulin , Swine , Swine, Miniature , Therapeutic Index
3.
Nat Commun ; 13(1): 942, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177603

ABSTRACT

Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Receptor, Insulin/agonists , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Alloxan/administration & dosage , Alloxan/toxicity , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , CHO Cells , Cricetulus , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , HEK293 Cells , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Lipolysis/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Rats , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Signal Transduction/drug effects , Swine , Swine, Miniature
4.
Bioorg Med Chem Lett ; 29(11): 1380-1385, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30952592

ABSTRACT

The parallel medicinal chemistry (PMC) was effectively applied to accelerate the optimization of diacylglycerol O-acyltransferase I (DGAT-1) inhibitors. Through a highly collaborative and iterative library design, synthesis and testing, a benzimidazole lead was rapidly and systematically advanced to a highly potent, selective and bioavailable DGAT1 inhibitor with the potential for further development.


Subject(s)
Benzimidazoles/pharmacology , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Chemistry, Pharmaceutical , Diacylglycerol O-Acyltransferase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 29(10): 1182-1186, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30926247

ABSTRACT

Previously disclosed benzimidazole-based DGAT1 inhibitors containing a cyclohexane carboxylic acid moiety suffer from isomerization at the alpha position of the carboxylic acid group, generating active metabolites which exhibit DGAT1 inhibition comparable to the corresponding parent compounds. In this report, we describe the design, synthesis and profiling of benzimidazole-based DGAT1 inhibitors with a [3.1.0] bicyclohexane carboxylic acid moiety. Our results show that single isomer 3A maintains in vitro and in vivo inhibition against DGAT1. In contrast to previous lead compounds, 3A does not undergo isomerization during in vitro hepatocyte incubation study or in vivo mouse study.


Subject(s)
Benzimidazoles/chemistry , Carboxylic Acids/chemistry , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Animals , Benzimidazoles/metabolism , Carboxylic Acids/metabolism , Chromatography, High Pressure Liquid , Cyclohexanones/chemistry , Diacylglycerol O-Acyltransferase/metabolism , Enzyme Inhibitors/analysis , Enzyme Inhibitors/metabolism , Hepatocytes/chemistry , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Isomerism , Mass Spectrometry , Mice , Rats
6.
PLoS One ; 14(2): e0211568, 2019.
Article in English | MEDLINE | ID: mdl-30811418

ABSTRACT

Physical activity promotes metabolic and cardiovascular health benefits that derive in part from the transcriptional responses to exercise that occur within skeletal muscle and other organs. There is interest in discovering a pharmacologic exercise mimetic that could imbue wellness and alleviate disease burden. However, the molecular physiology by which exercise signals the transcriptional response is highly complex, making it challenging to identify a single target for pharmacological mimicry. The current studies evaluated the transcriptome responses in skeletal muscle, heart, liver, and white and brown adipose to novel small molecule activators of AMPK (pan-activators for all AMPK isoforms) compared to that of exercise. A striking level of congruence between exercise and pharmacological AMPK activation was observed across the induced transcriptome of these five tissues. However, differences in acute metabolic response between exercise and pharmacologic AMPK activation were observed, notably for acute glycogen balances and related to the energy expenditure induced by exercise but not pharmacologic AMPK activation. Nevertheless, intervention with repeated daily administration of short-acting activation of AMPK was found to mitigate hyperglycemia and hyperinsulinemia in four rodent models of metabolic disease and without the cardiac glycogen accretion noted with sustained pharmacologic AMPK activation. These findings affirm that activation of AMPK is a key node governing exercise mediated transcription and is an attractive target as an exercise mimetic.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipose Tissue/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Animals , Energy Metabolism , Enzyme Activation/drug effects , Fatty Acids/metabolism , Gene Expression Regulation/drug effects , Glucose/metabolism , Homeostasis , Mice, Inbred C57BL , Oxidation-Reduction , Physical Conditioning, Animal
7.
Cell Metab ; 27(6): 1236-1248.e6, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29706567

ABSTRACT

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in triglyceride (TG) synthesis and has been shown to play a role in regulating hepatic very-low-density lipoprotein (VLDL) production in rodents. To explore the potential of DGAT2 as a therapeutic target for the treatment of dyslipidemia, we tested the effects of small-molecule inhibitors and gene silencing both in vitro and in vivo. Consistent with prior reports, chronic inhibition of DGAT2 in a murine model of obesity led to correction of multiple lipid parameters. In contrast, experiments in primary human, rhesus, and cynomolgus hepatocytes demonstrated that selective inhibition of DGAT2 has only a modest effect. Acute and chronic inhibition of DGAT2 in rhesus primates recapitulated the in vitro data yielding no significant effects on production of plasma TG or VLDL apolipoprotein B. These results call into question whether selective inhibition of DGAT2 is sufficient for remediation of dyslipidemia.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Dyslipidemias/metabolism , Hepatocytes/metabolism , Obesity/metabolism , Triglycerides/metabolism , Animals , Apolipoproteins B/metabolism , Cells, Cultured , Diacylglycerol O-Acyltransferase/genetics , Disease Models, Animal , Gene Silencing , Humans , Lipoproteins, VLDL/metabolism , Macaca fascicularis , Macaca mulatta , Mice , Mice, Inbred C57BL
8.
Am J Physiol Endocrinol Metab ; 313(1): E37-E47, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28292762

ABSTRACT

G protein-coupled receptor 40 (GPR40) partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose-independent insulin secretagogues. The class of small-molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and glucagon-like peptide-1 (GLP-1). Here we show that GPR40 AgoPAMs significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP-1 receptor-null mice. Furthermore, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase IV inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy rhesus macaque demonstrating that the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.


Subject(s)
Appetite Regulation/genetics , Body Weight/genetics , Eating/genetics , Glucagon-Like Peptide 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Weight Loss/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics
9.
ACS Med Chem Lett ; 5(10): 1082-7, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25349648

ABSTRACT

We report the discovery of a novel series of DGAT1 inhibitors in the benzimidazole class with a piperdinyl-oxy-cyclohexanecarboxylic acid moiety. This novel series possesses significantly improved selectivity against the A2A receptor, no ACAT1 off-target activity at 10 µM, and higher aqueous solubility and free fraction in plasma as compared to the previously reported pyridyl-oxy-cyclohexanecarboxylic acid series. In particular, 5B was shown to possess an excellent selectivity profile by screening it against a panel of more than 100 biological targets. Compound 5B significantly reduces lipid excursion in LTT in mouse and rat, demonstrates DGAT1 mediated reduction of food intake and body weight in mice, is negative in a 3-strain Ames test, and appears to distribute preferentially in the liver and the intestine in mice. We believe this lead series possesses significant potential to identify optimized compounds for clinical development.

10.
PLoS One ; 9(2): e88908, 2014.
Article in English | MEDLINE | ID: mdl-24558447

ABSTRACT

Inhibition of Diacylglycerol O-acyltransferase 1 (DGAT1) has been a mechanism of interest for metabolic disorders. DGAT1 inhibition has been shown to be a key regulator in an array of metabolic pathways; however, based on the DGAT1 KO mouse phenotype the anticipation is that pharmacological inhibition of DGAT1 could potentially lead to skin related adverse effects. One of the aims in developing small molecule DGAT1 inhibitors that target key metabolic tissues is to avoid activity on skin-localized DGAT1 enzyme. In this report we describe a modeling-based approach to identify molecules with physical properties leading to differential exposure distribution. In addition, we demonstrate histological and RNA based biomarker approaches that can detect sebaceous gland atrophy pre-clinically that could be used as potential biomarkers in a clinical setting.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Sebaceous Glands/drug effects , Sebaceous Glands/pathology , Animals , Atrophy/chemically induced , Atrophy/enzymology , Biomarkers/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Hydrophobic and Hydrophilic Interactions , Male , Mice , Skin/drug effects , Skin/enzymology , Skin/metabolism , Small Molecule Libraries/adverse effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology
11.
Obesity (Silver Spring) ; 21(7): 1406-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23671037

ABSTRACT

OBJECTIVE: Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransferase 1 (DGAT1) using small molecules DGAT1 inhibitors, compounds K and L. DESIGN AND METHODS: Biochemical and stable-label tracer approaches were applied to interrogate the functional activities of compounds K and L on TG synthesis and changes of carbon flow. Energy homeostasis and gut peptide release upon DGAT1 inhibition was conducted in mouse and dog models. RESULTS: Compounds K and L, dose-dependently inhibits post-prandial TG excursion in mouse and dog models. Weight loss studies in WT and Dgat1(-/-) mice, confirmed that the effects of compound K on body weight loss is mechanism-based. Compounds K and L altered incretin peptide release following oral fat challenge. Immunohistochemical studies with intestinal tissues demonstrate lack of detectable DGAT1 immunoreactivity in enteroendocrine cells. Furthermore, (13) C-fatty acid tracing studies indicate that compound K inhibition of DGAT1 increased the production of phosphatidyl choline (PC). CONCLUSION: Treatment with DGAT1 inhibitors improves lipid metabolism and body weight. DGAT1 inhibition leads to enhanced PC production via alternative carbon channeling. Immunohistological studies suggest that DGAT1 inhibitor's effects on plasma gut peptide levels are likely via an indirect mechanism. Overall these data indicate a translational potential towards the clinic.


Subject(s)
Body Weight/drug effects , Diacylglycerol O-Acyltransferase/metabolism , Gastrointestinal Tract/drug effects , Animals , Body Composition , Chromatography, Liquid , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/genetics , Disease Models, Animal , Dogs , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism , Feces/chemistry , Gastrointestinal Tract/metabolism , Ginsenosides/pharmacology , HT29 Cells , Hormones/metabolism , Humans , Immunohistochemistry , Lactones/pharmacology , Male , Mice , Mice, Inbred C57BL , Orlistat , Postprandial Period/drug effects , Tandem Mass Spectrometry , Triglycerides/blood
12.
ACS Med Chem Lett ; 4(8): 773-8, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-24900745

ABSTRACT

We report the design and synthesis of a series of novel DGAT1 inhibitors in the benzimidazole class with a pyridyl-oxy-cyclohexanecarboxylic acid moiety. In particular, compound 11A is a potent DGAT1 inhibitor with excellent selectivity against ACAT1. Compound 11A significantly reduces triglyceride excursion in lipid tolerance tests (LTT) in both mice and dogs at low plasma exposure. An in vivo study in mice with des-fluoro analogue 10A indicates that this series of compounds appears to distribute in intestine preferentially over plasma. The propensity to target intestine over plasma could be advantageous in reducing potential side effects since lower circulating levels of drug are required for efficacy. However, in the preclinical species, compound 11A undergoes cis/trans epimerization in vivo, which could complicate further development due to the presence of an active metabolite.

13.
Bioorg Med Chem ; 20(9): 2845-9, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22494842

ABSTRACT

Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor expressed primarily in the hypothalamus which plays a role in the onset of both diabetes and obesity. We report herein our progress made towards identifying a potent, selective bombesin receptor subtype-3 (BRS-3) agonist related to the previously described MK-7725(1) Chobanian et al. (2012) that would prevent atropisomerization through the increase of steric bulk at the C-2 position. This would thereby make clinical development of this class of compounds more cost effective by inhibiting racemization which can occur over long periods of time at room/elevated temperature.


Subject(s)
Benzodiazepines/chemistry , Drug Design , Receptors, Bombesin/agonists , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Animals , Humans , Mice , Protein Binding , Rats , Receptors, Bombesin/metabolism , Stereoisomerism , Sulfonamides/pharmacokinetics , Temperature
14.
Bioorg Med Chem Lett ; 22(8): 2811-7, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22444683

ABSTRACT

A new structural class of potent prolylcarboxypeptidase (PrCP) inhibitors was discovered by high-throughput screening. The series possesses a tractable SAR profile with sub-nanomolar in vitro IC(50) values. Compared to prior inhibitors, the new series demonstrated minimal activity shifts in pure plasma and complete ex vivo plasma target engagement in mouse plasma at the 20 h post-dose time point (po). In addition, the in vivo level of CNS and non-CNS drug exposure was measured.


Subject(s)
Carboxypeptidases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors , Animals , Butanols/chemical synthesis , Butanols/chemistry , Butanols/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Obesity/drug therapy , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology
15.
Bioorg Med Chem Lett ; 22(8): 2818-22, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22444685

ABSTRACT

A series of potent inhibitors of prolylcarboxypeptidase (PrCP) was developed by modifying a lead structure that was discovered by high-throughput screening. The tert-butyl pyrrolidine was replaced by an aminocyclopentane to reduce the metabolic liabilities of the original lead. The compounds demonstrated sub-nanomolar in vitro IC(50) values, minimal activity shifts in pure plasma and improved pharmacokinetics. Complete ex vivo plasma target engagement was achieved with low brain exposure at the 20 h time point following p.o. dosing in a mouse. The results indicate that the aminocyclopentanes are useful tools for studying the therapeutic potential of peripheral (non-CNS) PrCP inhibition.


Subject(s)
Amines/pharmacology , Carboxypeptidases/antagonists & inhibitors , Cyclopentanes/pharmacology , Drug Discovery , Enzyme Inhibitors , Amines/chemical synthesis , Amines/chemistry , Animals , Cyclization , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Obesity/drug therapy
16.
Bioorg Med Chem Lett ; 22(4): 1550-6, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22264488

ABSTRACT

A series of benzodihydroisofurans were discovered as novel, potent, bioavailable and brain-penetrant prolylcarboxypeptidase (PrCP) inhibitors. The structure-activity relationship (SAR) is focused on improving PrCP activity and metabolic stability, and reducing plasma protein binding. In the established diet-induced obese (eDIO) mouse model, compound ent-3a displayed target engagement both in plasma and in brain. However, this compound failed to induce significant body weight loss in eDIO mice in a five-day study.


Subject(s)
Carboxypeptidases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Furans/chemistry , Furans/pharmacology , Animals , Cells, Cultured , Disease Models, Animal , Drug Stability , Enzyme Activation/drug effects , Furans/chemical synthesis , Humans , Mice , Mice, Obese , Molecular Structure , Structure-Activity Relationship
17.
ACS Med Chem Lett ; 3(3): 252-6, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-24900461

ABSTRACT

Extensive structure-activity relationship studies of a series derived from atropisomer 1, a previously described chiral benzodiazepine sulfonamide series, led to a potent, brain penetrant and selective compound with excellent preclinical pharmacokinetic across species. We also describe the utilization of a high throughput mouse pharmacodynamic assay which allowed for expedient assessment of pharmacokinetic and brain distribution.

18.
J Lipid Res ; 53(1): 51-65, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22021650

ABSTRACT

In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study.


Subject(s)
Disease Models, Animal , Dyslipidemias/blood , Lipids/blood , Animals , Cricetinae , Dogs , Dyslipidemias/drug therapy , Fatty Acids/blood , Humans , Mice , Primates , Simvastatin/therapeutic use , Triglycerides/blood
19.
Cell Metab ; 11(2): 101-12, 2010 Feb 03.
Article in English | MEDLINE | ID: mdl-20096642

ABSTRACT

Bombesin receptor subtype 3 (BRS-3) is a G protein coupled receptor whose natural ligand is unknown. We developed potent, selective agonist (Bag-1, Bag-2) and antagonist (Bantag-1) ligands to explore BRS-3 function. BRS-3-binding sites were identified in the hypothalamus, caudal brainstem, and several midbrain nuclei that harbor monoaminergic cell bodies. Antagonist administration increased food intake and body weight, whereas agonists increased metabolic rate and reduced food intake and body weight. Prolonged high levels of receptor occupancy increased weight loss, suggesting a lack of tachyphylaxis. BRS-3 agonist effectiveness was absent in Brs3(-/Y) (BRS-3 null) mice but was maintained in Npy(-/-)Agrp(-/-), Mc4r(-/-), Cnr1(-/-), and Lepr(db/db) mice. In addition, Brs3(-/Y) mice lost weight upon treatment with either a MC4R agonist or a CB1R inverse agonist. These results demonstrate that BRS-3 has a role in energy homeostasis that complements several well-known pathways and that BRS-3 agonists represent a potential approach to the treatment of obesity.


Subject(s)
Anti-Obesity Agents/therapeutic use , Obesity/drug therapy , Peptides/therapeutic use , Receptors, Bombesin/agonists , Receptors, Bombesin/metabolism , Animals , Anti-Obesity Agents/pharmacokinetics , Body Weight/drug effects , Brain/metabolism , Eating/drug effects , Energy Metabolism/drug effects , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Peptides/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptors, Bombesin/antagonists & inhibitors
20.
Cell Metab ; 7(2): 179-85, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18249177

ABSTRACT

The arcuate nucleus of the hypothalamus (ARH) is a key component of hypothalamic pathways regulating energy balance, and leptin is required for normal development of ARH projections. Diet-induced obesity (DIO) has a polygenic mode of inheritance, and DIO individuals develop the metabolic syndrome when a moderate amount of fat is added to the diet. Here we demonstrate that rats selectively bred to develop DIO, which are known to be leptin resistant before they become obese, have defective ARH projections that persist into adulthood. Furthermore, the ability of leptin to activate intracellular signaling in ARH neurons in vivo and to promote ARH neurite outgrowth in vitro is significantly reduced in DIO neonates. Thus, animals that are genetically predisposed toward obesity display an abnormal organization of hypothalamic pathways involved in energy homeostasis that may be the result of diminished responsiveness of ARH neurons to the trophic actions of leptin during postnatal development.


Subject(s)
Hypothalamus/pathology , Neurites , Neurons/ultrastructure , Obesity/etiology , Animals , Appetite Regulation , Arcuate Nucleus of Hypothalamus/pathology , Diet , Energy Metabolism , Genetic Predisposition to Disease , Leptin/physiology , Rats , Rats, Inbred Strains , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...