Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Diabetes Res Clin Pract ; 205: 110974, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884063

ABSTRACT

AIMS: In recent-onset type 1 diabetes, clamp-derived C-peptide predicts good response to anti-CD3. Elevated proinsulin and proinsulin/C-peptide ratio (PI/CP) suggest increased metabolic/inflammatory beta cell burden. We reanalyzed trial data to compare the ability of baseline acutely glucose-stimulated proinsulin, C-peptide and PI/CP to predict functional outcome. METHODS: Eighty recent-onset type 1 diabetes patients participated in the placebo-controlled otelixizumab (GSK; NCT00627146) trial. Hyperglycemic clamps were performed at baseline, 6, 12 and 18 months, involving 3 h of induced euglycemia, followed by acutely raising and maintaining glycemia to ≥ 10 mmol/l for 140 min. Plasma proinsulin, C-peptide and PI/CP were determined after acute (minute 0 at 10 mmol/l; PI0, CP0, PI/CP0) and sustained glucose stimulation (AUC between minutes 60-140). Outcome was assessed as change in AUC60-140 C-peptide from baseline. RESULTS: In multiple linear regression, higher baseline (≥median [P50]) PI0 independently predicted preservation of beta cell function in response to anti-CD3 and interacted significantly with IAA. During follow-up, anti-CD3 tempered a further increase in PI/CP0, but not in PI0. CP0 outperformed PI0 and PI/CP0 for post-treatment monitoring. CONCLUSIONS: In recent-onset type 1 diabetes, elevated acutely glucose-stimulated proinsulin may complement or replace acutely or sustainedly stimulated C-peptide release for identifying good responders to anti-CD3, but not as outcome measure.


Subject(s)
Diabetes Mellitus, Type 1 , Proinsulin , Humans , Proinsulin/metabolism , Proinsulin/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Insulin/therapeutic use , Glucose/therapeutic use , C-Peptide , Blood Glucose/metabolism
2.
Clin Exp Immunol ; 211(3): 224-232, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36622793

ABSTRACT

The HLA region is the major genetic risk determinant of Type 1 diabetes. How non-HLA loci contribute to the genetic risk is incompletely understood, but there are indications that at least some impact progression of asymptomatic autoimmunity. We examined whether SNPs in 7 susceptibility loci (INS, SH2B3, PTPN2, PTPN22, CTLA4, CLEC16A, and IL2RA) could improve prediction of the progression from single to multiple autoantibody positivity, and from there on to diagnosis. SNPs were genotyped in persistently autoantibody positive relatives by allelic discrimination qPCR and disease progression was studied by multivariate Cox regression analysis. In our cohort, only the CTLA4 GA genotype (rs3087243, P = 0.002) and the CLEC16A AA genotype (rs12708716, P = 0.021) were associated with accelerated progression from single to multiple autoantibody positivity, but their effects were restricted to presence of HLA-DQ2/DQ8, and IAA as first autoantibody, respectively. The interaction of CTLA4 and HLA-DQ2/DQ8 overruled the effect of DQ2/DQ8 alone. The HLA-DQ2/DQ8-mediated risk of progression to multiple autoantibodies nearly entirely depended on heterozygosity for CTLA4. The SH2B3 TT genotype (rs3184504) was protective for HLA-DQ8 positive subjects (P = 0.003). At the stage of multiple autoantibodies, only the CTLA4 GA genotype was a minor independent risk factor for progression towards clinical diabetes (P = 0.034). Our study shows that non-HLA polymorphisms impact progression of islet autoimmunity in a subgroup-, stage- and SNP-specific way, suggesting distinct mechanisms. If confirmed, these findings may help refine risk assessment, follow-up, and prevention trials in risk groups.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Autoantibodies , Autoimmunity/genetics , CTLA-4 Antigen/genetics , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , Genotype , Lectins, C-Type/genetics , Monosaccharide Transport Proteins/genetics , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
3.
Cells ; 10(7)2021 07 04.
Article in English | MEDLINE | ID: mdl-34359863

ABSTRACT

Ongoing beta cell death in type 1 diabetes (T1D) can be detected using biomarkers selectively discharged by dying beta cells into plasma. microRNA-375 (miR-375) ranks among the top biomarkers based on studies in animal models and human islet transplantation. Our objective was to identify additional microRNAs that are co-released with miR-375 proportionate to the amount of beta cell destruction. RT-PCR profiling of 733 microRNAs in a discovery cohort of T1D patients 1 h before/after islet transplantation indicated increased plasma levels of 22 microRNAs. Sub-selection for beta cell selectivity resulted in 15 microRNAs that were subjected to double-blinded multicenter analysis. This led to the identification of eight microRNAs that were consistently increased during early graft destruction: besides miR-375, these included miR-132/204/410/200a/429/125b, microRNAs with known function and enrichment in beta cells. Their potential clinical translation was investigated in a third independent cohort of 46 transplant patients by correlating post-transplant microRNA levels to C-peptide levels 2 months later. Only miR-375 and miR-132 had prognostic potential for graft outcome, and none of the newly identified microRNAs outperformed miR-375 in multiple regression. In conclusion, this study reveals multiple beta cell-enriched microRNAs that are co-released with miR-375 and can be used as complementary biomarkers of beta cell death.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Islets of Langerhans Transplantation , MicroRNAs/genetics , Biomarkers/metabolism , Cell Count , Cohort Studies , Gene Expression Profiling , Gene Expression Regulation , Humans , MicroRNAs/metabolism , ROC Curve , Reproducibility of Results , Tropism
4.
Diabetologia ; 64(11): 2511-2516, 2021 11.
Article in English | MEDLINE | ID: mdl-34448034

ABSTRACT

AIMS/HYPOTHESIS: We examined whether the non-HLA susceptibility locus ERBB3/IKZF4 influences progression of type 1 diabetes stage specifically according to sex. METHODS: SNPs of ERBB3 (rs2292239 T/G) and IKZF4 (rs1701704 G/T) were screened by allelic discrimination quantitative PCR assay in first-degree relatives of type 1 diabetes patients who had developed at least one circulating autoantibody. The effect of ERBB3/IKZF4 genotypes and sex, on the progression of single autoantibody positivity to multiple autoantibody positivity and from multiple autoantibody positivity to diabetes, was studied by Kaplan-Meier analysis and multivariate Cox regression. RESULTS: In the cohort of autoantibody-positive first-degree relatives, the risk allele frequencies for ERBB3 rs2292239 (T) and IKZF4 rs1701704 (G) were increased. There was a significant male excess at the stage of multiple autoantibody positivity (p = 0.021). In Kaplan-Meier survival analysis, progression from single to multiple antibody positivity was delayed in female participants with genotype ERBB3 GG (p = 0.018, vs ERBB3 TG+TT) or IKZF4 TT (p = 0.023, vs IKZF4 GT+GG), but not in male participants. In multivariate Cox regression models, the interaction effects between female sex and ERBB3 GG (p = 0.012; HR = 0.305 [95% CI 0.120, 0.773]) or between female sex and IKZF4 TT (p = 0.011; HR = 0.329 [95% CI 0.140, 0.777]) emerged as potential determinants of delayed progression to multiple autoantibodies. The progression from multiple autoantibody positivity to type 1 diabetes appeared not to be influenced by ERBB3/IKZF4. CONCLUSIONS/INTERPRETATION: In siblings and offspring of type 1 diabetes patients, polymorphism in region ERBB3/IKZF4 may affect disease progression at the level of epitope spreading in female individuals. Our findings suggest that interaction between sex and ERBB3/IKZF4 may contribute to the post-pubertal male excess in type 1 diabetes.


Subject(s)
Autoantibodies/blood , Autoantigens/immunology , Diabetes Mellitus, Type 1/immunology , Epitopes/immunology , Ikaros Transcription Factor/genetics , Receptor, ErbB-3/genetics , Sex Characteristics , Adolescent , Adult , Child , Diabetes Mellitus, Type 1/genetics , Disease Progression , Female , Genetic Predisposition to Disease , Humans , Insulin/immunology , Male , Polymorphism, Single Nucleotide/genetics , Proportional Hazards Models , Real-Time Polymerase Chain Reaction , Receptor-Like Protein Tyrosine Phosphatases, Class 8/immunology , Zinc Transporter 8/immunology
5.
JCI Insight ; 4(23)2019 12 05.
Article in English | MEDLINE | ID: mdl-31671072

ABSTRACT

At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting ß cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to Account for different Types of data and Outcomes) to identify a composite panel associated with decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps to reduce data dimensionality, incorporates error estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a potentially novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Disease Progression , Insulin Secretion/physiology , Adolescent , Adult , Child , Computational Biology , Female , Humans , Hypoglycemic Agents/pharmacology , Immunotherapy/methods , Insulin-Secreting Cells/metabolism , Male , Young Adult
6.
Eur J Endocrinol ; 181(3): 363-374, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31330498

ABSTRACT

OBJECTIVE: To better define the rare adverse event (AE) of diabetes mellitus associated with immune checkpoint inhibitors (ICIs). DESIGN AND METHODS: We report the case of a lung cancer patient with diabetic ketoacidosis (DKA) and autoimmune thyroiditis during pembrolizumab treatment. We provide a systematic review of all published cases (PubMed/Web of Science/Cochrane, through November 2018) of autoimmune diabetes mellitus related to blockade of the cytotoxic T-lymphocyte antigen 4 (CTLA-4)-, programmed cell death 1 (PD-1) receptor or its ligand (PD-L1) or combination (ICI) therapy. RESULTS: Our literature search identified 90 patient cases (our case excluded). Most patients were treated with anti-PD-1 or anti-PD-L1 as monotherapy (79%) or in combination with CTLA-4 blockade (15%). On average, diabetes mellitus was diagnosed after 4.5 cycles; earlier for combination ICI at 2.7 cycles. Early-onset diabetes mellitus (after one or two cycles) was observed during all treatment regimens. Diabetic ketoacidosis was present in 71%, while elevated lipase levels were detected in 52% (13/25). Islet autoantibodies were positive in 53% of patients with a predominance of glutamic acid decarboxylase antibodies. Susceptible HLA genotypes were present in 65% (mostly DR4). Thyroid dysfunction was the most frequent other endocrine AE at 24% incidence in this patient population. CONCLUSION: ICI-related diabetes mellitus is a rare but often life-threatening metabolic urgency of which health-care professionals and patients should be aware. Close monitoring of blood glucose and prompt endocrine investigation in case of hyperglycemia is advisable. Predisposing factors such as HLA genotype might explain why some individuals are at risk.


Subject(s)
Antineoplastic Agents, Immunological/adverse effects , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/diagnosis , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/drug therapy , Diabetes Mellitus, Type 1/blood , Humans , Immunologic Factors/adverse effects , Immunologic Factors/therapeutic use , Lung Neoplasms/blood , Lung Neoplasms/drug therapy , Male , Middle Aged
7.
J Clin Endocrinol Metab ; 104(2): 451-460, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30203041

ABSTRACT

Aim: Several biomarkers have been proposed to detect pancreatic ß cell destruction in vivo but so far have not been compared for sensitivity and significance. Methods: We used islet transplantation as a model to compare plasma concentrations of miR-375, 65-kDa subunit of glutamate decarboxylase (GAD65), and unmethylated insulin DNA, measured at subpicomolar sensitivity, and study their discharge kinetics, power for outcome prediction, and detection of graft loss during follow-up. Results: At 60 minutes after transplantation, GAD65 and miR-375 consistently showed near-equimolar and correlated increases proportional to the number of implanted ß cells. GAD65 and miR-375 showed comparable power to predict poor graft outcome at 2 months, with areas under the curve of 0.833 and 0.771, respectively (P = 0.53). Using receiver operating characteristic analysis, we defined likelihood ratios (LRs) for rationally selected result intervals. In GADA-negative recipients (n = 28), GAD65 <4.5 pmol/L (LR = 0.15) and >12.2 pmol/L (LR = ∞) predicted good and poor outcomes, respectively. miR-375 could be used in all recipients irrespective of GAD65 autoantibody status (n = 46), with levels <1.4 pmol/L (LR = 0.14) or >7.6 pmol/L (LR = 9.53) as dual thresholds. The posttransplant surge of unmethylated insulin DNA was inconsistent and unrelated to outcome. Combined measurement of these three biomarkers was also tested as liquid biopsy for ß cell death during 2-month follow-up; incidental surges of GAD65, miR-375, and (un)methylated insulin DNA, alone or combined, were confidently detected but could not be related to outcome. Conclusions: GAD65 and miR-375 performed equally well in quantifying early graft destruction and predicting graft outcome, outperforming unmethylated insulin DNA.


Subject(s)
Diabetes Mellitus, Type 1/surgery , Glutamate Decarboxylase/blood , Graft Rejection/diagnosis , Insulin/blood , Islets of Langerhans Transplantation/adverse effects , MicroRNAs/blood , Adult , Biomarkers , DNA Methylation , Follow-Up Studies , Graft Rejection/blood , Humans , Insulin/genetics , Middle Aged , Postoperative Period , Prognosis
8.
Diabetologia ; 61(7): 1623-1632, 2018 07.
Article in English | MEDLINE | ID: mdl-29679103

ABSTRACT

AIMS/HYPOTHESIS: HLA-A*24 carriership hampers achievement of insulin independence in islet allograft recipients. However, less than half of those who fail to achieve insulin independence carry the allele. We investigated whether genetic polymorphism at the recipients' zinc transporter 8-encoding SLC30A8 gene (rs13266634) could complement their HLA-A*24 status in predicting functional graft outcome. METHODS: We retrospectively analysed data of a hospital-based patient cohort followed for 18 months post transplantation. Forty C-peptide-negative type 1 diabetic individuals who received >2 million beta cells (>4000 islet equivalents) per kg body weight in one or two intraportal implantations under similar immunosuppression were genotyped for SLC30A8. Outcome measurements included achievement and maintenance of graft function. Metabolic benefit was defined as <25% CV of fasting glycaemia in the presence of >331 pmol/l C-peptide, in addition to achievement of insulin independence and maintenance of C-peptide positivity. RESULTS: In multivariate analysis, HLA-A*24 positivity, presence of SLC30A8 CT or TT genotypes and BMI more than or equal to the group median (23.9 kg/m2) were independently associated with failure to achieve insulin independence (p = 0.015-0.046). The risk increased with the number of factors present (p < 0.001). High BMI interacted with SLC30A8 T allele carriership to independently predict difficulty in achieving graft function with metabolic benefit (p = 0.015). Maintenance of C-peptide positivity was mainly associated with older age at the time of implantation. Only HLA-A*24 carriership independently predicted failure to maintain acceptable graft function once achieved (p = 0.012). CONCLUSIONS/INTERPRETATION: HLA-A*24, the SLC30A8 T allele and high BMI are associated with poor graft outcome and should be considered in the interpretation of future transplantation trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT00798785 and NCT00623610.


Subject(s)
Blood Glucose/metabolism , Body Mass Index , Diabetes Mellitus, Type 1/surgery , HLA-A24 Antigen/genetics , Insulin-Secreting Cells/transplantation , Islets of Langerhans Transplantation/adverse effects , Polymorphism, Genetic , Zinc Transporter 8/genetics , Allografts , Biomarkers/blood , Blood Glucose/drug effects , Clinical Trials as Topic , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Female , HLA-A24 Antigen/immunology , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Male , Middle Aged , Recovery of Function , Retrospective Studies , Risk Factors , Treatment Outcome
9.
Diabetes Care ; 41(5): 1076-1083, 2018 05.
Article in English | MEDLINE | ID: mdl-29545461

ABSTRACT

OBJECTIVE: We investigated the effect of HLA class I risk alleles on disease progression in various phases of subclinical islet autoimmunity in first-degree relatives of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: A registry-based group of siblings/offspring (aged 0-39 years) was monitored from single- to multiple-autoantibody positivity (n = 267) and from multiple-autoantibody positivity to clinical onset (n = 252) according to HLA-DQ, -A*24, -B*18, and -B*39 status. Genetic markers were determined by PCR sequence-specific oligotyping. RESULTS: Unlike HLA-B*18 or -B*39, HLA-A*24 was associated with delayed progression from single- to multiple-autoantibody positivity (P = 0.009) but not to type 1 diabetes. This occurred independently from older age (P < 0.001) and absence of HLA-DQ2/DQ8 or -DQ8 (P < 0.001 and P = 0.003, respectively), and only in the presence of GAD autoantibodies. In contrast, HLA-A*24 was associated with accelerated progression from multiple-autoantibody positivity to clinical onset (P = 0.006), but its effects were restricted to HLA-DQ8+ relatives with IA-2 or zinc transporter 8 autoantibodies (P = 0.002). HLA-B*18, but not -B*39, was also associated with more rapid progression, but only in HLA-DQ2 carriers with double positivity for GAD and insulin autoantibodies (P = 0.004). CONCLUSIONS: HLA-A*24 predisposes to a delayed antigen spreading of humoral autoimmunity, whereas HLA-A*24 and -B*18 are associated with accelerated progression of advanced subclinical autoimmunity in distinct risk groups. The relation of these alleles to the underlying disease process requires further investigation. Their typing should be relevant for the preparation and interpretation of observational and interventional studies in asymptomatic type 1 diabetes.


Subject(s)
Autoantibodies/blood , Autoimmunity/genetics , Diabetes Mellitus, Type 1/pathology , HLA-A24 Antigen/genetics , HLA-B18 Antigen/genetics , HLA-DQ Antigens/genetics , Islets of Langerhans/immunology , Adolescent , Adult , Child , Child, Preschool , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Disease Progression , Female , Genetic Predisposition to Disease , Genotype , Humans , Infant , Infant, Newborn , Insulin Antibodies/blood , Male , Registries , Risk Factors , Young Adult
10.
PLoS One ; 13(3): e0193670, 2018.
Article in English | MEDLINE | ID: mdl-29518118

ABSTRACT

A disproportional increase of circulating GAD65 within hours from an intraportal islet allotransplantation has been validated as biomarker of beta cell loss and poor functional outcome. More sensitive assays are, however, needed to allow detection of episodes of subtle beta cell loss during late-stage graft rejection or in the peri-onset period of type 1 diabetes. We applied the same sandwich monoclonal antibody couple reactive towards the C- and N-terminus of GAD65 on three advanced immunoassay platforms-the Cytometric Bead Array (CBA, Becton, Dickinson and Company), ElectroChemiLuminescence ImmunoAssay (ECLIA, Meso Scale Discovery) and digital ELISA technology (Single Molecule Array-SIMOA, Quanterix. We then compared analytical performance (linearity, imprecision, limit of detection and functional sensitivity), correlation of results, and practicality. All evaluated techniques showed linearity up to at least 500 ng/dL (76.9 pmol/L). SIMOA achieved the lowest imprecision. The 3 platforms correlate well with each other and could all detect subpicomolar concentrations of GAD65 in plasma, but only SIMOA and CBA could quantify down to that range. SIMOA can achieve the highest sample throughput. The three methods tested allow sensitive detection of GAD65, but SIMOA appears best suited for automated quantification of subpicomolar concentrations.


Subject(s)
Glutamate Decarboxylase/analysis , Glutamate Decarboxylase/blood , Immunoassay/instrumentation , Biomarkers/blood , Blood Chemical Analysis/instrumentation , Enzyme-Linked Immunosorbent Assay/instrumentation , Humans , Recombinant Proteins/analysis , Recombinant Proteins/blood , Sensitivity and Specificity
11.
Diabetes Care ; 40(8): 1065-1072, 2017 08.
Article in English | MEDLINE | ID: mdl-28701370

ABSTRACT

OBJECTIVE: We investigated whether islet autoantibody profile, HLA-DQ genotype, and age influenced a 20-year progression to diabetes from first autoantibody positivity (autoAb+) in first-degree relatives of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Persistently islet autoAb+ siblings and offspring (n = 462) under 40 years of age were followed by the Belgian Diabetes Registry. AutoAbs against insulin (IAA), GAD (GADA), IA-2 antigen (IA-2A), and zinc transporter 8 (ZnT8A) were determined by radiobinding assay. RESULTS: The 20-year progression rate of multiple-autoAb+ relatives (n = 194) was higher than that for single-autoAb+ participants (n = 268) (88% vs. 54%; P < 0.001). Relatives positive for IAA and GADA (n = 54) progressed more slowly than double-autoAb+ individuals carrying IA-2A and/or ZnT8A (n = 38; P = 0.001). In multiple-autoAb+ relatives, Cox regression analysis identified the presence of IA-2A or ZnT8A as the only independent predictors of more rapid progression to diabetes (P < 0.001); in single-autoAb+ relatives, it identified younger age (P < 0.001), HLA-DQ2/DQ8 genotype (P < 0.001), and IAA (P = 0.028) as independent predictors of seroconversion to multiple positivity for autoAbs. In time-dependent Cox regression, younger age (P = 0.042), HLA-DQ2/DQ8 genotype (P = 0.009), and the development of additional autoAbs (P = 0.012) were associated with more rapid progression to diabetes. CONCLUSIONS: In single-autoAb+ relatives, the time to multiple-autoAb positivity increases with age and the absence of IAA and HLA-DQ2/DQ8 genotype. The majority of multiple-autoAb+ individuals progress to diabetes within 20 years; this occurs more rapidly in the presence of IA-2A or ZnT8A, regardless of age, HLA-DQ genotype, and number of autoAbs. These data may help to refine the risk stratification of presymptomatic type 1 diabetes.


Subject(s)
Autoantibodies/blood , Diabetes Mellitus, Type 1/blood , Disease Progression , HLA-DQ Antigens/genetics , Registries , Adolescent , Adult , Belgium , Child , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Female , Follow-Up Studies , Humans , Infant , Insulin/blood , Male , Proportional Hazards Models , Risk Factors , Surveys and Questionnaires , Young Adult , Zinc Transporter 8/blood
13.
PLoS One ; 11(12): e0166702, 2016.
Article in English | MEDLINE | ID: mdl-27907006

ABSTRACT

BACKGROUND: The hyperglycemic clamp test, the gold standard of beta cell function, predicts impending type 1 diabetes in islet autoantibody-positive individuals, but the latter may benefit from less invasive function tests such as the proinsulin:C-peptide ratio (PI:C). The present study aims to optimize precision of PI:C measurements by automating a dual-label trefoil-type time-resolved fluorescence immunoassay (TT-TRFIA), and to compare its diagnostic performance for predicting type 1 diabetes with that of clamp-derived C-peptide release. METHODS: Between-day imprecision (n = 20) and split-sample analysis (n = 95) were used to compare TT-TRFIA (AutoDelfia, Perkin-Elmer) with separate methods for proinsulin (in-house TRFIA) and C-peptide (Elecsys, Roche). High-risk multiple autoantibody-positive first-degree relatives (n = 49; age 5-39) were tested for fasting PI:C, HOMA2-IR and hyperglycemic clamp and followed for 20-57 months (interquartile range). RESULTS: TT-TRFIA values for proinsulin, C-peptide and PI:C correlated significantly (r2 = 0.96-0.99; P<0.001) with results obtained with separate methods. TT-TRFIA achieved better between-day %CV for PI:C at three different levels (4.5-7.1 vs 6.7-9.5 for separate methods). In high-risk relatives fasting PI:C was significantly and inversely correlated (rs = -0.596; P<0.001) with first-phase C-peptide release during clamp (also with second phase release, only available for age 12-39 years; n = 31), but only after normalization for HOMA2-IR. In ROC- and Cox regression analysis, HOMA2-IR-corrected PI:C predicted 2-year progression to diabetes equally well as clamp-derived C-peptide release. CONCLUSIONS: The reproducibility of PI:C benefits from the automated simultaneous determination of both hormones. HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the more tedious hyperglycemic clamp test.


Subject(s)
C-Peptide/blood , Diabetes Mellitus, Type 1/blood , Hyperglycemia/blood , Proinsulin/blood , Adolescent , Adult , Autoantibodies/blood , Child , Child, Preschool , Diabetes Mellitus, Type 1/pathology , Fasting , Female , Glucose Tolerance Test , Glycated Hemoglobin/metabolism , Humans , Hyperglycemia/pathology , Insulin/blood , Insulin Resistance/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Prognosis , Regression Analysis
14.
Am J Clin Pathol ; 146(1): 67-77, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27357293

ABSTRACT

OBJECTIVES: We evaluated the Bio-Rad (Irvine, CA) D-100 and the Sebia (Lisses, France) Capillarys 3 Tera for the measurement of hemoglobin A1c (HbA1c) in venous blood samples. METHODS: Whole-blood samples and control material were analyzed with the D-100 and Capillarys 3 Tera and compared with our routine method, HLC-723G7 (Tosoh, Tokyo, Japan). An evaluation protocol to test precision, trueness, linearity, carryover, and selectivity was set up according to Clinical and Laboratory Standards Institute guidelines. The results were presented in National Glycohemoglobin Standardization Program and International Federation of Clinical Chemistry (IFCC) units. RESULTS: Both systems showed excellent precision (total coefficients of variation <2%, IFCC) and bias (<0.3% or 3 mmol/mol). Linearity was demonstrated for HbA1c values from 3.8% (18 mmol/mol) to 18.5% (179 mmol/mol). Results were correlated with the routine method using Bland-Altman analysis, showing a mean difference of 0.33% or 3.6 mmol/mol for the D-100 and of 0.25% or 2.6 mmol/mol for the Capillarys 3 Tera vs HLC-723G7. None of the automated instruments were prone to interferences by labile HbA1c (≤10 g/L glucose), carbamylated hemoglobin (≤0.5 mmol/L potassium cyanate), hemoglobin variants, bilirubin (≤15 mg/dL), and triglycerides (≤3,360 mg/dL). CONCLUSIONS: The Bio-Rad D-100 and the Sebia Capillarys 3 Tera instruments performed well for the determination of HbA1c in terms of quality criteria as well as for sample throughput.


Subject(s)
Glycated Hemoglobin/analysis , Hemoglobinometry/instrumentation , Electrophoresis, Capillary/instrumentation , Electrophoresis, Capillary/methods , Hemoglobinometry/methods , Humans
15.
Diabetes Care ; 39(6): 1060-4, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27208324

ABSTRACT

OBJECTIVE: We investigated whether changes in islet autoantibody profile and presence of HLA risk markers, reported to predict rapid ß-cell loss in pre-type 1 diabetes, associate with poor functional outcome in islet allograft recipients. RESEARCH DESIGN AND METHODS: Forty-one patients received ≥2.3 million ß-cells/kg body wt in one to two intraportal implantations. Outcome after 6-18 months was assessed by C-peptide (random and stimulated), insulin dose, and HbA1c. RESULTS: Patients carrying HLA-A*24-positive or experiencing a significant autoantibody surge within 6 months after the first transplantation (n = 19) had lower C-peptide levels (P ≤ 0.003) and higher insulin needs (P < 0.001) despite higher HbA1c levels (P ≤ 0.018). They became less often insulin independent (16% vs. 68%, P = 0.002) and remained less often C-peptide positive (47% vs. 100%, P < 0.001) than recipients lacking both risk factors. HLA-A*24 positivity or an autoantibody surge predicted insulin dependence (P = 0.007). CONCLUSIONS: HLA-A*24 and early autoantibody surge after islet implantation associate with poor functional graft outcome.


Subject(s)
Autoantibodies/immunology , Diabetes Mellitus, Type 1/therapy , HLA-A24 Antigen/genetics , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Islets of Langerhans Transplantation , Adult , Allografts , C-Peptide/metabolism , Cation Transport Proteins/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Female , Glutamate Decarboxylase/immunology , Humans , Insulin-Secreting Cells , Male , Middle Aged , Transplantation, Homologous , Treatment Outcome , Zinc Transporter 8
16.
Endocrinology ; 156(12): 4755-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26431226

ABSTRACT

There is a clinical need for plasma tests to detect and quantify the in vivo destruction of pancreatic ß-cells in type 1 diabetes. We previously developed a time-resolved fluorescence immunoassay (TRFIA) to glutamate decarboxylase 65 kDa (GAD65) (GAD65-TRFIA) that was able to detect the synchronous necrotic destruction of transplanted ß-cells in the hours after their infusion in the liver. This GAD65-TRFIA, however, lacked sensitivity to detect continued ß-cell rejection beyond this acute phase. The aim of present study was to gain at least an order of magnitude in analytical sensitivity by switching to Becton Dickinson cytometric bead array (CBA) (GAD65-CBA) enhanced sensitivity format, using the same couple of monoclonal antibodies. We compared the performances of GAD65-CBA and GAD65-TRFIA using Clinical and Laboratory Standards Institute protocols for linearity, imprecision, specificity, limit of detection, and functional sensitivity. We conducted a method comparison and assessed the biologic potential on samples from human recipients of islet grafts. The GAD65-CBA showed acceptable linearity and imprecision. Switching from TRFIA to CBA lowered functional sensitivity by a factor 35 and lowered limit of detection by a factor 11 with minimal need for method optimization. The enhanced sensitivity greatly expands the application domain of our biomarker and allowed for the first time to detect ongoing ß-cell destruction up to at least 1 day after islet transplantation. We conclude that the GAD65-CBA is suitable for biological and clinical assessment of the real-time destruction of ß-cells in intraportal transplantation.


Subject(s)
Apoptosis , Diabetes Mellitus, Type 1/blood , Glutamate Decarboxylase/blood , Insulin-Secreting Cells/metabolism , Islets of Langerhans Transplantation , Biomarkers/blood , Diabetes Mellitus, Type 1/therapy , Fluoroimmunoassay/methods , Humans , Immunoassay/methods , Microspheres
17.
Diabetologia ; 58(12): 2753-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26409458

ABSTRACT

AIMS/HYPOTHESIS: We examined whether measures of glycaemic variability (GV), assessed by continuous glucose monitoring (CGM) and self-monitoring of blood glucose (SMBG), can complement or replace measures of beta cell function and insulin action in detecting the progression of preclinical disease to type 1 diabetes. METHODS: Twenty-two autoantibody-positive (autoAb(+)) first-degree relatives (FDRs) of patients with type 1 diabetes who were themselves at high 5-year risk (50%) for type 1 diabetes underwent CGM, a hyperglycaemic clamp test and OGTT, and were followed for up to 31 months. Clamp variables were used to estimate beta cell function (first-phase [AUC5-10 min] and second-phase [AUC120-150 min] C-peptide release) combined with insulin resistance (glucose disposal rate; M 120-150 min). Age-matched healthy volunteers (n = 20) and individuals with recent-onset type 1 diabetes (n = 9) served as control groups. RESULTS: In autoAb(+) FDRs, M 120-150 min below the 10th percentile (P10) of controls achieved 86% diagnostic efficiency in discriminating between normoglycaemic FDRs and individuals with (impending) dysglycaemia. M 120-150 min outperformed AUC5-10 min and AUC120-150 min C-peptide below P10 of controls, which were only 59-68% effective. Among GV variables, CGM above the reference range was better at detecting (impending) dysglycaemia than elevated SMBG (77-82% vs 73% efficiency). Combined CGM measures were equally efficient as M 120-150 min (86%). Daytime GV variables were inversely correlated with clamp variables, and more strongly with M 120-150 min than with AUC5-10 min or AUC120-150 min C-peptide. CONCLUSIONS/INTERPRETATION: CGM-derived GV and the glucose disposal rate, reflecting both insulin secretion and action, outperformed SMBG and first- or second-phase AUC C-peptide in identifying FDRs with (impending) dysglycaemia or diabetes. Our results indicate the feasibility of developing minimally invasive CGM-based criteria for close metabolic monitoring and as outcome measures in trials.


Subject(s)
Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Glucose Clamp Technique , Hyperglycemia/blood , Adolescent , Adult , Area Under Curve , Blood Glucose Self-Monitoring , C-Peptide/blood , Child , Female , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Healthy Volunteers , Humans , Insulin-Secreting Cells/metabolism , Male , Young Adult
18.
Diabetes Care ; 38(4): 644-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25583753

ABSTRACT

OBJECTIVE: Immune intervention trials in recent-onset type 1 diabetes would benefit from biomarkers associated with good therapeutic response. In the previously reported randomized placebo-controlled anti-CD3 study (otelixizumab; GlaxoSmithKline), we tested the hypothesis that specific diabetes autoantibodies might serve this purpose. RESEARCH DESIGN AND METHODS: In the included patients (n = 40 otelixizumab, n = 40 placebo), ß-cell function was assessed as area under the curve (AUC) C-peptide release during a hyperglycemic glucose clamp at baseline (median duration of insulin treatment: 6 days) and every 6 months until 18 months after randomization. (Auto)antibodies against insulin (I[A]A), GAD (GADA), IA-2 (IA-2A), and ZnT8 (ZnT8A) were determined on stored sera by liquid-phase radiobinding assay. RESULTS: At baseline, only better preserved AUC C-peptide release and higher levels of IAA were associated with better preservation of ß-cell function and lower insulin needs under anti-CD3 treatment. In multivariate analysis, IAA (P = 0.022) or the interaction of IAA and C-peptide (P = 0.013) independently predicted outcome together with treatment. During follow-up, good responders to anti-CD3 treatment (i.e., IAA(+) participants with relatively preserved ß-cell function [≥ 25% of healthy control subjects]) experienced a less pronounced insulin-induced rise in I(A)A and lower insulin needs. GADA, IA-2A, and ZnT8A levels were not influenced by anti-CD3 treatment, and their changes showed no relation to functional outcome. CONCLUSIONS: There is important specificity of IAA among other diabetes autoantibodies to predict good therapeutic response of recent-onset type 1 diabetic patients to anti-CD3 treatment. If confirmed, future immune intervention trials in type 1 diabetes should consider both relatively preserved functional ß-cell mass and presence of IAA as inclusion criteria.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Insulin Antibodies/blood , Insulin-Secreting Cells/drug effects , Adolescent , Adult , Biomarkers/blood , Child , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/physiopathology , Female , Humans , Insulin/therapeutic use , Insulin-Secreting Cells/physiology , Male , Prognosis , Time Factors , Treatment Outcome , Young Adult
19.
J Clin Endocrinol Metab ; 100(2): 551-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25405499

ABSTRACT

CONTEXT AND OBJECTIVE: In preparation of future prevention trials, we aimed to identify predictors of 3-year diabetes onset among oral glucose tolerance test (OGTT)- and hyperglycemic clamp-derived metabolic markers in persistently islet autoantibody positive (autoAb(+)) offspring and siblings of patients with type 1 diabetes (T1D). DESIGN: The design is a registry-based study. SETTING: Functional tests were performed in a hospital setting. PARTICIPANTS: Persistently autoAb(+) first-degree relatives of patients with T1D (n = 81; age 5-39 years). MAIN OUTCOME MEASURES: We assessed 3-year predictive ability of OGTT- and clamp-derived markers using receiver operating characteristics (ROC) and Cox regression analysis. Area under the curve of clamp-derived first-phase C-peptide release (AUC(5-10 min); min 5-10) was determined in all relatives and second-phase release (AUC(120-150 min); min 120-150) in those aged 12-39 years (n = 62). RESULTS: Overall, the predictive ability of AUC(5-10 min) was better than that of peak C-peptide, the best predictor among OGTT-derived parameters (ROC-AUC [95%CI]: 0.89 [0.80-0.98] vs 0.81 [0.70-0.93]). Fasting blood glucose (FBG) and AUC(5-10 min) provided the best combination of markers for prediction of diabetes within 3 years; (ROC-AUC [95%CI]: 0.92 [0.84-1.00]). In multivariate Cox regression analysis, AUC(5-10 min)) (P = .001) was the strongest independent predictor and interacted significantly with all tested OGTT-derived parameters. AUC(5-10 min) below percentile 10 of controls was associated with 50-70% progression to T1D regardless of age. Similar results were obtained for AUC(120-150 min). CONCLUSIONS: Clamp-derived first-phase C-peptide release can be used as an efficient and simple screening strategy in persistently autoAb(+) offspring and siblings of T1D patients to predict impending diabetes.


Subject(s)
Autoantibodies/blood , Child of Impaired Parents , Diabetes Mellitus, Type 1/blood , Siblings , Adolescent , Adult , Child , Child, Preschool , Diabetes Mellitus, Type 1/immunology , Female , Glucose Intolerance , Glucose Tolerance Test , Humans , Insulin/blood , Male , Predictive Value of Tests , ROC Curve , Young Adult
20.
Diabetes Res Clin Pract ; 103(1): 97-105, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24332797

ABSTRACT

AIMS: We investigated the prevalence of diabetes autoantibodies (Abs) in Cameroonian patients and controls, assessed their contribution in disease classification and compared results with data from Belgium. METHODS: Abs against GAD (GADA), IA-2 (IA-2A) and zinc transporter 8 (ZnT8A) were assessed in 302 recently diagnosed Cameroonian patients with diabetes and 184 control subjects without diabetes aged below 40 years. RESULTS: Only 27 (9%) Cameroonian patients were younger than 15 years. Overall, 29% of patients presented at least one diabetes-associated antibody vs 9% in healthy controls (24% vs 7% for GADA (p<0.001), 10% vs 3% for IA-2A (p<0.006), 4% vs 2% for ZnT8A). Ab(+) patients had lower C-peptide levels (p<0.001), were more often insulin-treated (p<0.002) and were as frequently diagnosed with type 1 diabetes as Ab(-) patients. Only 43% of Ab(+) patients aged 15-39 years were clinically classified as having type 1 diabetes in Cameroon vs 96% in Belgium (p<0.001). Not one Ab(+) Cameroonian patient carried HLA-DQ2/DQ8 genotype vs 23% of Belgian Ab(+) patients (p<0.001). Younger age at diagnosis and antibody positivity were independent predictors of insulin therapy. Ab(+) Cameroonian patients were older (p<0.001), had higher BMI (p<0.001) and lower Ab titers than Belgian Ab(+) patients. In ketonuric patients, prevalence of autoantibodies was similar as in non-ketonuric patients. CONCLUSIONS: In Cameroonian patients with diabetes aged under 40 years, antibody-positivity is not clearly related to disease phenotype, but may help predict the need for insulin treatment.


Subject(s)
Autoantibodies/blood , Biomarkers/blood , Cation Transport Proteins/immunology , Diabetes Mellitus, Type 1/immunology , Glutamate Decarboxylase/immunology , Receptor-Like Protein Tyrosine Phosphatases, Class 8/immunology , Adolescent , Adult , Belgium/epidemiology , Cameroon/epidemiology , Case-Control Studies , Child , Child, Preschool , Diabetes Mellitus, Type 1/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Prevalence , Young Adult , Zinc Transporter 8
SELECTION OF CITATIONS
SEARCH DETAIL
...