Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 44(15): 2421-31, 2001 Jul 19.
Article in English | MEDLINE | ID: mdl-11448224

ABSTRACT

p56lck is a member of the src family of tyrosine kinases and plays a critical role in the signal transduction events that lead to T cell activation. Ligands for the p56lck SH2 domain have the potential to disrupt the interaction of p56lck with its substrates and derail the signaling cascade that leads to the production of cytokines such as interleukin-2. Starting from the quintuply charged (at physiological pH) phosphorylated tetrapeptide, AcpYEEI, we recently disclosed (J. Med. Chem. 1999, 42, 722 and J. Med. Chem. 1999, 42, 1757) the design of the modified dipeptide 3, which carries just two charges at physiological pH. Here we present the elaboration of 3 to the nonpeptidic, monocharged compound, 9S. This molecule displays good binding affinity for the p56lck SH2 domain (K(d) 1 microM) and good cell permeation, and this combination of properties allowed us to demonstrate clear-cut inhibitory effects on a very early event in T cell activation, namely calcium mobilization.


Subject(s)
Cell Membrane Permeability , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Phenylalanine/chemical synthesis , Pyridones/chemical synthesis , src Homology Domains , Caco-2 Cells , Calcium/metabolism , Humans , Jurkat Cells , Ligands , Models, Molecular , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Phenylalanine/pharmacology , Pyridones/chemistry , Pyridones/pharmacology
2.
Bioorg Med Chem Lett ; 10(20): 2267-70, 2000 Oct 16.
Article in English | MEDLINE | ID: mdl-11055335

ABSTRACT

Structure-activity studies on a hexapeptide N-terminal cleavage product of a dodecamer substrate led to the identification of very potent and highly specific inhibitors of the HCV NS3 protease/NS4A cofactor peptide complex. The largest increase in potency was accomplished by the introduction of a (4R)-naphthalen-1-yl-4-methoxy substituent to the P2 proline. N-Terminal truncation resulted in tetrapeptides containing a C-terminal carboxylic acid, which exhibited low micromolar activity against the HCV serine protease.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Hepacivirus/enzymology , Oligopeptides/chemical synthesis , Serine Proteinase Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cathepsin B/antagonists & inhibitors , Chymotrypsin/antagonists & inhibitors , Drug Design , Humans , Kinetics , Leukocyte Elastase/antagonists & inhibitors , Models, Molecular , Molecular Conformation , Oligopeptides/chemistry , Oligopeptides/pharmacology , Pancreatic Elastase/antagonists & inhibitors , Protein Conformation , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Swine
3.
J Med Chem ; 43(6): 1094-108, 2000 Mar 23.
Article in English | MEDLINE | ID: mdl-10737742

ABSTRACT

Starting from palinavir (1), our lead HIV protease inhibitor, we have discovered a new series of truncated analogues in which the P(3)-P(2) quinaldic-valine portion of 1 was replaced by 2', 6'-dimethylphenoxyacetyl. With EC(50)'s in the 1-2 nM range, some of these compounds are among the most potent inhibitors of HIV replication in vitro, reported to date. One of the most promising members in this series (compound 27, BILA 2185 BS) exhibited a favorable overall pharmacokinetic profile, with 61% apparent oral bioavailability in rat. X-ray crystal structures and molecular modeling were used to rationalize the high potency resulting from incorporation of this structurally simple, achiral ligand into the P(3)-P(2) position of hydroxyethylamine-based HIV protease inhibitors.


Subject(s)
HIV Protease Inhibitors/chemical synthesis , Pyridines/chemical synthesis , Administration, Oral , Animals , Biological Availability , Cell Line , Crystallography, X-Ray , Drug Evaluation, Preclinical , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Ligands , Models, Molecular , Pyridines/chemistry , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
4.
J Med Chem ; 42(10): 1757-66, 1999 May 20.
Article in English | MEDLINE | ID: mdl-10346928

ABSTRACT

p56lck is a member of the src family of tyrosine kinases. Through modular binding units called SH2 domains, p56lck promotes phosphotyrosine-dependent protein-protein interactions and plays a critical role in signal transduction events that lead to T-cell activation. Starting from the phosphorylated dipeptide (2), a high-affinity ligand for the p56lck SH2 domain, we have designed novel dipeptides that contain monocharged, nonhydrolyzable phosphate group replacements and bind to the protein with KD's in the low micromolar range. Replacement of the phosphate group in phosphotyrosine-containing sequences by a (R/S)-hydroxyacetic (compound 8) or an oxamic acid (compound 10) moiety leads to hydrolytically stable, monocharged ligands, with 83- and 233-fold decreases in potency, respectively. This loss in binding affinity can be partially compensated for by incorporating large lipophilic groups at the inhibitor N-terminus. These groups provide up to 13-fold increases in potency depending on the nature of the phosphate replacement. The discovery of potent (2-3 microM), hydrolytically stable dipeptide derivatives, bearing only two charges at physiological pH, represents a significant step toward the discovery of compounds with cellular activity and the development of novel therapeutics for conditions associated with undesired T-cell proliferation.


Subject(s)
Dipeptides/chemical synthesis , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , src Homology Domains , Crystallography, X-Ray , Dipeptides/chemistry , Ligands , Models, Molecular , Protein Binding , Structure-Activity Relationship
5.
J Med Chem ; 42(4): 722-9, 1999 Feb 25.
Article in English | MEDLINE | ID: mdl-10052978

ABSTRACT

Src homology-2 (SH2) domains are noncatalytic motifs containing approximately 100 amino acid residues that are involved in intracellular signal transduction. The phosphotyrosine-containing tetrapeptide Ac-pYEEI binds to the SH2 domain of p56lck (Lck) with an affinity of 0.1 microM. Starting from Ac-pYEEI, we have designed potent antagonists of the Lck SH2 domain which are reduced in peptidic character and in which the three carboxyl groups have been eliminated. The two C-terminal amino acids (EI) have been replaced by benzylamine derivatives and the pY + 1 glutamic acid has been substituted with leucine. The best C-terminal fragment identified, (S)-1-(4-isopropylphenyl)ethylamine, binds to the Lck SH2 domain better than the C-terminal dipeptide EI. Molecular modeling suggests that the substituents at the 4-position of the phenyl ring occupy the pY + 3 lipophilic pocket in the SH2 domain originally occupied by the isoleucine side chain. This new series of phosphotyrosine-containing dipeptides binds to the Lck SH2 domain with potencies comparable to that of tetrapeptide 1.


Subject(s)
Dipeptides/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Phosphotyrosine/chemistry , src Homology Domains , Binding, Competitive , Dipeptides/chemistry , Dipeptides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Ligands , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Models, Molecular , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 8(19): 2719-24, 1998 Oct 06.
Article in English | MEDLINE | ID: mdl-9873610

ABSTRACT

Replacement of the C-terminal carboxylic acid functionality of peptide inhibitors of hepatitis C virus (HCV) NS3 protease (complexed with NS4A peptide cofactor) by activated carbonyl groups does not produce any substantial increase in potency. These latter inhibitors also inhibit a variety of other serine and cysteine proteases whereas the carboxylic acids are specific. Norvaline was identified as a chemically stable replacement for the P1 residue of Ac-DDIVPC-OH which was also compatible with activated carbonyl functionalities.


Subject(s)
Hepacivirus/enzymology , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Cysteine/chemistry , Cysteine/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL