Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 6(1): 153-168, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38243132

ABSTRACT

The global loss of heterochromatin during ageing has been observed in eukaryotes from yeast to humans, and this has been proposed as one of the causes of ageing. However, the cause of this age-associated loss of heterochromatin has remained enigmatic. Here we show that heterochromatin markers, including histone H3K9 di/tri-methylation and HP1, decrease with age in muscle stem cells (MuSCs) as a consequence of the depletion of the methyl donor S-adenosylmethionine (SAM). We find that restoration of intracellular SAM in aged MuSCs restores heterochromatin content to youthful levels and rejuvenates age-associated features, including DNA damage accumulation, increased cell death, and defective muscle regeneration. SAM is not only a methyl group donor for transmethylation, but it is also an aminopropyl donor for polyamine synthesis. Excessive consumption of SAM in polyamine synthesis may reduce its availability for transmethylation. Consistent with this premise, we observe that perturbation of increased polyamine synthesis by inhibiting spermidine synthase restores intracellular SAM content and heterochromatin formation, leading to improvements in aged MuSC function and regenerative capacity in male and female mice. Together, our studies demonstrate a direct causal link between polyamine metabolism and epigenetic dysregulation during murine MuSC ageing.


Subject(s)
Heterochromatin , S-Adenosylmethionine , Humans , Female , Male , Mice , Animals , Aged , S-Adenosylmethionine/metabolism , Aging , Polyamines/metabolism , Cellular Senescence , Muscles/metabolism
2.
Cell Metab ; 35(10): 1814-1829.e6, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37699398

ABSTRACT

Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.


Subject(s)
Cellular Senescence , Senotherapeutics , Cellular Senescence/genetics , Cell Death , Aniline Compounds
3.
Stem Cell Reports ; 17(1): 82-95, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021050

ABSTRACT

Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Cell Self Renewal/drug effects , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Muscle, Skeletal/cytology , Resting Phase, Cell Cycle/drug effects , Adult Stem Cells/metabolism , Animals , Cell Cycle , Cell Differentiation/drug effects , Gene Expression Profiling , Mice , Mice, Transgenic , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/drug effects , Satellite Cells, Skeletal Muscle/metabolism , Stem Cell Transplantation , Transcriptome
4.
Nat Metab ; 2(4): 307-317, 2020 04.
Article in English | MEDLINE | ID: mdl-32601609

ABSTRACT

Aging impairs tissue repair. This is pronounced in skeletal muscle, whose regeneration by muscle stem cells (MuSCs) is robust in young adult animals but inefficient in older organisms. Despite this functional decline, old MuSCs are amenable to rejuvenation through strategies that improve the systemic milieu, such as heterochronic parabiosis. One such strategy, exercise, has long been appreciated for its benefits on healthspan, but its effects on aged stem cell function in the context of tissue regeneration are incompletely understood. Here we show that exercise in the form of voluntary wheel running accelerates muscle repair in old animals and improves old MuSC function. Through transcriptional profiling and genetic studies, we discovered that the restoration of old MuSC activation ability hinges on restoration of Cyclin D1, whose expression declines with age in MuSCs. Pharmacologic studies revealed that Cyclin D1 maintains MuSC activation capacity by repressing TGFß signaling. Taken together, these studies demonstrate that voluntary exercise is a practicable intervention for old MuSC rejuvenation. Furthermore, this work highlights the distinct role of Cyclin D1 in stem cell quiescence.


Subject(s)
Cyclin D1/metabolism , Muscle, Skeletal/cytology , Physical Conditioning, Animal , Stem Cells/cytology , Animals , Cell Separation , Cell Transplantation , Flow Cytometry , Mice , Muscle, Skeletal/metabolism , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...