Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Pediatr Neurol ; 43(5): 325-30, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20933175

ABSTRACT

Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondrial Encephalomyopathies/genetics , Mutation/genetics , Adolescent , Child , Child, Preschool , DNA Mutational Analysis/methods , Female , Humans , Infant , MELAS Syndrome/genetics , Male , Mitochondrial Encephalomyopathies/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Polymorphism, Genetic , RNA, Transfer, Leu/genetics , Sequence Analysis, Protein
2.
Exp Ther Med ; 1(6): 1057-1060, 2010 Nov.
Article in English | MEDLINE | ID: mdl-22993640

ABSTRACT

Matrix metalloproteases (MMPs) are a family of zinc-dependent endopeptidases that degrade extracellular matrix proteins. MMP-1 and MMP-2 are produced by endothelial cells and are involved in specific vascular pathologies, including atherosclerosis and aortal aneurysm. One of the most important differences between these two metalloproteases is the possibility of hydrolysis of elastin and collagen type IV by MMP-2, but not by MMP-1. Elastin-derived peptides are generated as a result of the degradation of elastin fibers. The aim of our study was to compare the production of MMP-1 and MMP-2 in cultured human arterial endothelial cells derived from vascular pathologies localized at three different sites, the coronary artery, iliac artery and aorta, measured as their concentration in cell culture medium. The second aim was to evaluate the influence of κ-elastin (at concentrations 0.1, 0.4, 1.0, 2.5 or 5.0 µg/ml) on the production of the evaluated metalloproteases in three endothelial cell lines. The production of MMP-1 was statistically significantly greater in endothelial cells derived from the aorta compared to that in the endothelium obtained from the coronary and iliac arteries. There were no statistically significant differences in the production of MMP-2 among the endothelial cell lines tested. The addition of κ-elastin at all evaluated concentrations did not statistically significantly influence the concentration of MMP-1 in the cultured coronary artery endothelium. Furthermore, no statistically significant differences were observed in the cultured iliac artery endothelium. In the cultured endothelium derived from the aorta, κ-elastin at concentrations of 0.1 and 0.4 µg/ml significantly increased the amount of MMP-1.

3.
Przegl Lek ; 62(12): 1494-501, 2005.
Article in Polish | MEDLINE | ID: mdl-16786781

ABSTRACT

Endogenous methylarginines, the catabolism products of proteins containing post-translationally methylated arginine residues, are the modulators of arginine metabolism. Endogenous methylarginines compete with arginine about cationic aminoacid transporter and some of them, e.g. asymmetric dimethylarginine (ADMA) and N-mono-methylarginine (MMA), are competitive inhibitors of nitric oxide synthases. The changes of arginine metabolism, induced by these methylarginines, may have serious consequences, because arginine is the precursor of cell-signalling molecules such as NO, agmatine, glutamate and gamma-aminobutyric acid (GABA) and the regulatory molecules polyamines. ADMA has also prooxidant properties and increases endothelial adhesiveness for monocytes. Asymmetric methyl-arginines induce endothelial dysfunction, which may be reversed by L-arginine supplementation, what is defined as "arginine paradox". The increased plasma concentration of asymmetric methylarginines is induced by hypercholesterolemic or hyperhomocysteinemic diets and by rich sodium chloride intake. The high level of plasma asymmetric methyl-arginines accompanies atherosclerosis, hypertension, chronic renal failure, diabetes, insulin resistence, hyperthyreosis, schizophrenia and sclerosis multiplex. The causes of increased concentration ADMA and MMA in these diseases are just now discovered. The hope in the future is the modulation of methylarginines concentration by regulation of expression and activities of enzymes taking part in the metabolism of these substances, particularly of dimethyl-arginine dimethyl-aminotransferase. The main aim of the present study is to pay attention to possibility of the modulation of asymmetric methyl-arginines concentration, what may be a new way of synthase nitric oxide activity regulation in vivo and may be useful in future therapy of patologies in which synthesis of NO is troubled.


Subject(s)
Arginine/analogs & derivatives , Cardiovascular Diseases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Arginine/metabolism , Cardiovascular Diseases/etiology , Endothelium, Vascular/metabolism , Enzyme Inhibitors/metabolism , Humans
4.
Oncol Rep ; 10(5): 1341-4, 2003.
Article in English | MEDLINE | ID: mdl-12883704

ABSTRACT

Two mutations of methylenetetrahydrofolate reductase (MTHFR) gene (C677T and A1298C) may lead to a decreased activity of the enzyme. These mutations may change a risk of some cancers. We evaluated these two polymorphisms of MTHFR in patients with small cell lung cancer (SCLC) and non-small cell lung cancer (NCSCL). All lung cancer patients had statistically significantly higher percentage of MTHFR 677TT genotype in comparison with non-cancer controls. There were no statistically significant differences in the distribution of MTHFR 1298 genotypes. Neither of the polymorphisms presented any statistically significant differences between SCLC and NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Small Cell/genetics , Lung Neoplasms/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Polymorphism, Genetic , Female , Genotype , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL