Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Water Res ; 256: 121492, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593604

ABSTRACT

Cyanobacterial blooms, producing toxic secondary metabolites, are becoming increasingly common phenomena in the face of rising global temperatures. They are the world's most abundant photosynthetic organisms, largely owing their success to a range of highly diverse and complex natural products possessing a broad spectrum of different bioactivities. Over 2600 compounds have been isolated from cyanobacteria thus far, and their characterisation has revealed unusual and useful chemistries and motifs including alkynes, halogens, and non-canonical amino acids. Genome sequencing of cyanobacteria lags behind natural product isolation, with only 19% of cyanobacterial natural products associated with a sequenced organism. Recent advances in meta(genomics) provide promise to narrow this gap and has also facilitated the uprise of combined genomic and metabolomic approaches, heralding a new era of discovery of novel compounds. Analyses of the datasets described within this manuscript reveal the asynchrony of current genomic and metabolomic data, highlight the chemical diversity of cyanobacterial natural products. Linked to this manuscript, we make these manually curated datasets freely accessible for the public to facilitate further research in this important area.


Subject(s)
Cyanobacteria , Genomics , Metabolomics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Biological Products , Genome, Bacterial
2.
Biomolecules ; 14(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254717

ABSTRACT

With the rise in antimicrobial resistance, there is an urgent need for new classes of antibiotic with which to treat infectious disease. Marinomycin, a polyene antibiotic from a marine microbe, has been shown capable of killing methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF), as well as having promising activity against melanoma. An attractive solution to the photoprotection of this antibiotic has been demonstrated. Here, we report the identification and analysis of the marinomycin biosynthetic gene cluster (BGC), and the biosynthetic assembly of the macrolide. The marinomycin BGC presents a challenge in heterologous expression due to its large size and high GC content, rendering the cluster prone to rearrangement. We demonstrate the transformation of Streptomyces lividans using a construct containing the cluster, and the heterologous expression of the encoded biosynthetic machinery and production of marinomycin B.


Subject(s)
Antineoplastic Agents , Melanoma , Methicillin-Resistant Staphylococcus aureus , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Multigene Family
3.
Nat Rev Drug Discov ; 22(11): 895-916, 2023 11.
Article in English | MEDLINE | ID: mdl-37697042

ABSTRACT

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.


Subject(s)
Artificial Intelligence , Biological Products , Humans , Algorithms , Machine Learning , Drug Discovery , Drug Design , Biological Products/pharmacology
4.
Biomolecules ; 13(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37627283

ABSTRACT

Cyanobacteria are the most abundant photosynthesizers on earth, and as such, they play a central role in marine metabolite generation, ocean nutrient cycling, and the control of planetary oxygen generation. Cyanobacteriophage infection exerts control on all of these critical processes of the planet, with the phage-ported homologs of genes linked to photosynthesis, catabolism, and secondary metabolism (marine metabolite generation). Here, we analyze the 153 fully sequenced cyanophages from the National Center for Biotechnology Information (NCBI) database and the 45 auxiliary metabolic genes (AMGs) that they deliver into their hosts. Most of these AMGs are homologs of those found within cyanobacteria and play a key role in cyanobacterial metabolism-encoding proteins involved in photosynthesis, central carbon metabolism, phosphate metabolism, methylation, and cellular regulation. A greater understanding of cyanobacteriophage infection will pave the way to a better understanding of carbon fixation and nutrient cycling, as well as provide new tools for synthetic biology and alternative approaches for the use of cyanobacteria in biotechnology and sustainable manufacturing.


Subject(s)
Bacteriophages , Cyanobacteria , Virus Diseases , Humans , Photosynthesis , Secondary Metabolism , Bacteriophages/genetics
5.
ACS Catal ; 13(9): 6365-6374, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37180963

ABSTRACT

Aqueous transformations confer many advantages, including decreased environmental impact and increased opportunity for biomolecule modulation. Although several studies have been conducted to enable the cross-coupling of aryl halides in aqueous conditions, until now a process for the cross-coupling of primary alkyl halides in aqueous conditions was missing from the catalytic toolbox and considered impossible. Alkyl halide coupling in water suffers from severe problems. The reasons for this include the strong propensity for ß-hydride elimination, the need for highly air- and water-sensitive catalysts and reagents, and the intolerance of many hydrophilic groups to cross-coupling conditions. Here, we report a broadly applicable and readily accessible process for the cross-coupling of water-soluble alkyl halides in water and air by using simple and commercially available bench-stable reagents. The trisulfonated aryl phosphine TXPTS in combination with a water-soluble palladium salt Na2PdCl4 allowed for the Suzuki-Miyaura coupling of water-soluble alkyl halides with aryl boronic acids, boronic esters, and borofluorate salts in mild, fully aqueous conditions. Multiple challenging functionalities, including unprotected amino acids, an unnatural halogenated amino acid within a peptide, and herbicides can be diversified in water. Structurally complex natural products were used as testbeds to showcase the late-stage tagging methodology of marine natural products to enable liquid chromatography-mass spectrometry (LC-MS) detection. This enabling methodology therefore provides a general method for the environmentally friendly and biocompatible derivatization of sp3 alkyl halide bonds.

6.
Org Chem Front ; 8(20): 5722-5727, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34745636

ABSTRACT

The development of mild, aqueous conditions for the cross-coupling of highly functionalized (hetero)aryl chlorides or bromides is attractive, enabling their functionalization and diversification. Herein, we report a general method for Suzuki-Miyaura cross-coupling at 37 °C in aqueous media in the presence of air. We demonstrate application of this general methodology for derivatisation of (poly)chlorinated, medicinally active compounds and halogenated amino acids. The approach holds the potential to be a useful tool for late-stage functionalization or analogue generation.

7.
ACS Chem Biol ; 16(11): 2116-2123, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34648268

ABSTRACT

Natural products and their analogues are often challenging to synthesize due to their complex scaffolds and embedded functional groups. Solely relying on engineering the biosynthesis of natural products may lead to limited compound diversity. Integrating synthetic biology with synthetic chemistry allows rapid access to much more diverse portfolios of xenobiotic compounds, which may accelerate the discovery of new therapeutics. As a proof-of-concept, by supplementing an Escherichia coli strain expressing the violacein biosynthesis pathway with 5-bromo-tryptophan in vitro or tryptophan 7-halogenase RebH in vivo, six halogenated analogues of violacein or deoxyviolacein were generated, demonstrating the promiscuity of the violacein biosynthesis pathway. Furthermore, 20 new derivatives were generated from 5-brominated violacein analogues via the Suzuki-Miyaura cross-coupling reaction directly using the crude extract without prior purification. Herein we demonstrate a flexible and rapid approach to access a diverse chemical space that can be applied to a wide range of natural product scaffolds.


Subject(s)
Biological Products/chemistry , Indoles/chemistry , Biosynthetic Pathways , Molecular Structure , Synthetic Biology
8.
Chem Soc Rev ; 50(16): 9346, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34346445

ABSTRACT

Correction for 'Antiviral drug discovery: preparing for the next pandemic' by Catherine S. Adamson et al., Chem. Soc. Rev., 2021, 50, 3647-3655, DOI: .

9.
Chem Soc Rev ; 50(17): 9443-9481, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34368824

ABSTRACT

The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.


Subject(s)
Halogenation , Synthetic Biology , Catalysis
10.
Chem Soc Rev ; 50(6): 3647-3655, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33524090

ABSTRACT

Clinically approved antiviral drugs are currently available for only 10 of the more than 220 viruses known to infect humans. The SARS-CoV-2 outbreak has exposed the critical need for compounds that can be rapidly mobilised for the treatment of re-emerging or emerging viral diseases, while vaccine development is underway. We review the current status of antiviral therapies focusing on RNA viruses, highlighting strategies for antiviral drug discovery and discuss the challenges, solutions and options to accelerate drug discovery efforts.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Discovery/methods , Molecular Targeted Therapy/methods , Pandemics/prevention & control , RNA, Viral/antagonists & inhibitors , Antiviral Agents/chemistry , Biological Products/chemistry , Biological Products/pharmacology , COVID-19/prevention & control , COVID-19/virology , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Nucleic Acid Synthesis Inhibitors/chemistry , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
11.
Chembiochem ; 22(4): 712-716, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33058439

ABSTRACT

A nonenzymatic Pictet-Spengler reaction has been postulated to give rise to a subset of naturally occurring uridyl peptide antibiotics (UPAs). Here, using a combination of strain engineering and synthetic chemistry, we demonstrate that Pictet-Spengler chemistry may be employed to generate even greater diversity in the UPAs. We use an engineered strain to afford access to meta-tyrosine containing pacidamycin 4. Pictet-Spengler diversification of this compound using a small series of aryl-aldehydes was achieved with some derivatives affording remarkable diastereomeric control.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Oligopeptides/chemical synthesis , Peptides/chemical synthesis , Streptomyces/metabolism , Uridine/analogs & derivatives , Uridine/chemical synthesis
12.
Front Plant Sci ; 11: 581675, 2020.
Article in English | MEDLINE | ID: mdl-33329644

ABSTRACT

Plant secondary metabolites have applications for the food, biofuel, and pharmaceutical industries. Recent advances in pathway elucidation and host expression systems now allow metabolic engineering of plant metabolic pathways to produce "new-to-nature" derivatives with novel biological activities, thereby amplifying the range of industrial uses for plant metabolites. Here we use a transient expression system in the model plant Nicotiana benthamiana to reconstitute the two-step plant-derived biosynthetic pathway for auxin (indole acetic acid) to achieve accumulation up to 500 ng/g fresh mass (FM). By expressing these plant-derived enzymes in combination with either bacterial halogenases and alternative substrates, we can produce both natural and new-to-nature halogenated auxin derivatives up to 990 ng/g FM. Proteins from the auxin synthesis pathway, tryptophan aminotransferases (TARs) and flavin-dependent monooxygenases (YUCs), could be transiently expressed in combination with four separate bacterial halogenases to generate halogenated auxin derivatives. Brominated auxin derivatives could also be observed after infiltration of the transfected N. benthamiana with potassium bromide and the halogenases. Finally, the production of additional auxin derivatives could also be achieved by co-infiltration of TAR and YUC genes with various tryptophan analogs. Given the emerging importance of transient expression in N. benthamiana for industrial scale protein and product expression, this work provides insight into the capacity of N. benthamiana to interface bacterial genes and synthetic substrates to produce novel halogenated metabolites.

13.
Org Lett ; 22(23): 9346-9350, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33216552

ABSTRACT

Four unusual cyclopeptides, zelkovamycins B-E (1-4), were isolated from an endophytic Kitasatospora sp. Zelkovamycin B was featured by an unprecedented 3-methyl-5-hydroxypyrrolidine-2,4-dione ring system linked to the cyclopeptide skeleton. Their structures and full configurations were established by spectroscopic analysis, Marfey's method, and NMR calculations. A plausible biosynthetic pathway for zelkovamycins was proposed based on gene cluster analysis. Zelkovamycin E displayed potent inhibitory activity against H1N1 influenza A virus.


Subject(s)
Amino Acids/chemistry , Antimicrobial Cationic Peptides/chemistry , Endophytes/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Streptomyces/chemistry , Influenza A Virus, H1N1 Subtype/chemistry , Molecular Structure , Peptides, Cyclic/chemistry
15.
Chembiochem ; 21(3): 417-422, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31318464

ABSTRACT

The rare nonproteinogenic amino acid, meta-l-tyrosine is biosynthetically intriguing. Whilst the biogenesis of tyrosine from phenylalanine is well characterised, the mechanistic basis for meta-hydroxylation is unknown. Herein, we report the analysis of 3-hydroxylase (Phe3H) from Streptomyces coeruleorubidus. Insights from kinetic analyses of the wild-type enzyme and key mutants as well as of the biocatalytic conversion of synthetic isotopically labelled substrates and fluorinated substrate analogues advance understanding of the process by which meta-hydroxylation is mediated, revealing T202 to play an important role. In the case of the WT enzyme, a deuterium label at the 3-position is lost, whereas in in the T202A mutant 75 % retention is observed, with loss of stereospecificity. These data suggest that one of two possible mechanisms is at play; direct, enzyme-catalysed deprotonation following electrophilic aromatic substitution or stereospecific loss of one proton after a 1,2-hydride shift. Furthermore, our kinetic parameters for Phe3H show efficient regiospecific generation of meta-l-tyrosine from phenylalanine and demonstrate the enzyme's ability to regiospecifically hydroxylate unnatural fluorinated substrates.


Subject(s)
Amino Acids, Aromatic/metabolism , Phenylalanine Hydroxylase/metabolism , Amino Acids, Aromatic/chemistry , Hydroxylation , Molecular Structure , Phenylalanine Hydroxylase/chemistry , Streptomyces/enzymology
16.
Chem Commun (Camb) ; 55(91): 13653-13656, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31593201

ABSTRACT

Blending synthetic biology and synthetic chemistry represents a powerful approach to diversity complex molecules. To further enable this, compatible synthetic tools are needed. We report the first Buchwald Hartwig amination reactions with unprotected halotryptophans under aqueous conditions and demonstrate this methodology is applicable also to the modification of unprotected tripeptides and the natural product barettin.


Subject(s)
Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Tryptophan/analogs & derivatives , Water/chemistry , Amination , Aniline Compounds/chemistry , Catalysis , Halogens/chemistry , Oligopeptides/chemical synthesis , Palladium/chemistry , Tryptophan/chemical synthesis
17.
Nat Chem ; 11(12): 1091-1097, 2019 12.
Article in English | MEDLINE | ID: mdl-31611633

ABSTRACT

Oceanic cyanobacteria are the most abundant oxygen-generating phototrophs on our planet and are therefore important to life. These organisms are infected by viruses called cyanophages, which have recently shown to encode metabolic genes that modulate host photosynthesis, phosphorus cycling and nucleotide metabolism. Herein we report the characterization of a wild-type flavin-dependent viral halogenase (VirX1) from a cyanophage. Notably, halogenases have been previously associated with secondary metabolism, tailoring natural products. Exploration of this viral halogenase reveals it capable of regioselective halogenation of a diverse range of substrates with a preference for forming aryl iodide species; this has potential implications for the metabolism of the infected host. Until recently, a flavin-dependent halogenase that is capable of iodination in vitro had not been reported. VirX1 is interesting from a biocatalytic perspective as it shows strikingly broad substrate flexibility and a clear preference for iodination, as illustrated by kinetic analysis. These factors together render it an attractive tool for synthesis.


Subject(s)
Bacteriophages/enzymology , Cyanobacteria/virology , Oxidoreductases/metabolism , Bacteriophages/genetics , Chemistry Techniques, Synthetic , Halogenation , Kinetics , Molecular Structure , Substrate Specificity
18.
Chem Sci ; 10(32): 7549-7553, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31588306

ABSTRACT

The photoprotection and isolation of marinomycin A using sporopollenin exine capsules (SpECs) derived from the spores of the plant Lycopodium clavatum is described. The marinomycins have a particularly short half-life in natural light, which severely impacts their potential biological utility given that they display potent antibiotic and anticancer activity. The SpEC encapsulation of the marinomycin A dramatically increases the half-life of the polyene macrodiolide to the direct exposure to UV radiation by several orders of magnitude, thereby making this a potentially useful strategy for other light sensitive bioactive agents. In addition, we report that the SpECs can also be used to selectively extract culture broths that contain the marinomycins, which provides a significantly higher recovery than with conventional XAD resins and provides concomitant photoprotection.

19.
Chemistry ; 25(46): 10866-10875, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31125453

ABSTRACT

The blending of synthetic chemistry with biosynthetic processes provides a powerful approach to synthesis. Biosynthetic halogenation and synthetic cross-coupling have great potential to be used together, for small molecule generation, access to natural product analogues and as a tool for chemical biology. However, to enable enhanced generality of this approach, further synthetic tools are needed. Though considerable research has been invested in the diversification of phenylalanine and tyrosine, functionalisation of tryptophans thorough cross-coupling has been largely neglected. Tryptophan is a key residue in many biologically active natural products and peptides; in proteins it is key to fluorescence and dominates protein folding. To this end, we have explored the Heck cross-coupling of halo-indoles and halo-tryptophans in water, showing broad reaction scope. We have demonstrated the ability to use this methodology in the functionalisation of a brominated antibiotic (bromo-pacidamycin), as well as a marine sponge metabolite, barettin.

20.
J Nat Prod ; 81(12): 2692-2699, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30460844

ABSTRACT

Patulin (1) is a mycotoxin contaminant in fruit and vegetable products worldwide. Biocontrol agents, such as the yeast Rhodotorula kratochvilovae strain LS11, can reduce patulin (1) contamination in food. R. kratochvilovae LS11 converts patulin (1) into desoxypatulinic acid (DPA) (5), which is less cytotoxic than the mycotoxin (1) to in vitro human lymphocytes. In the present study, we report our investigations into the pathway of degradation of patulin (1) to DPA (5) by R. kratochvilovae. Isotopic labeling experiments revealed that 5 derives from patulin (1) through the hydrolysis of the γ-lactone ring and subsequent enzymatic modifications. The ability of patulin (1) and DPA (5) to cause genetic damage was also investigated by the cytokinesis-block micronucleus cytome assay on in vitro human lymphocytes. Patulin (1) was demonstrated to cause much higher chromosomal damage than DPA (5).


Subject(s)
Patulin/metabolism , Rhodotorula/metabolism , Inactivation, Metabolic , Isotope Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...