Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 19(17)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480502

ABSTRACT

In many multi-object tracking applications, the sensor(s) may have controllable states. Examples include movable sensors in multi-target tracking applications in defence, and unmanned air vehicles (UAVs) as sensors in multi-object systems used in civil applications such as inspection and fault detection. Uncertainties in the number of objects (due to random appearances and disappearances) as well as false alarms and detection uncertainties collectively make the above problem a highly challenging stochastic sensor control problem. Numerous solutions have been proposed to tackle the problem of precise control of sensor(s) for multi-object detection and tracking, and, in this work, recent contributions towards the advancement in the domain are comprehensively reviewed. After an introduction, we provide an overview of the sensor control problem and present the key components of sensor control solutions in general. Then, we present a categorization of the existing methods and review those methods under each category. The categorization includes a new generation of solutions called selective sensor control that have been recently developed for applications where particular objects of interest need to be accurately detected and tracked by controllable sensors.

2.
Sensors (Basel) ; 19(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987259

ABSTRACT

There is a large body of literature on solving the SLAM problem for various autonomous vehicle applications. A substantial part of the solutions is formulated based on using statistical (mainly Bayesian) filters such as Kalman filter and its extended version. In such solutions, the measurements are commonly some point features or detections collected by the sensor(s) on board the autonomous vehicle. With the increasing utilization of scanners with common autonomous cars, and availability of 3D point clouds in real-time and at fast rates, it is now possible to use more sophisticated features extracted from the point clouds for filtering. This paper presents the idea of using planar features with multi-object Bayesian filters for SLAM. With Bayesian filters, the first step is prediction, where the object states are propagated to the next time based on a stochastic transition model. We first present how such a transition model can be developed, and then propose a solution for state prediction. In the simulation studies, using a dataset of measurements acquired from real vehicle sensors, we apply the proposed model to predict the next planar features and vehicle states. The results show reasonable accuracy and efficiency for statistical filtering-based SLAM applications.

SELECTION OF CITATIONS
SEARCH DETAIL