Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucl Med Biol ; 34(3): 233-7, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17383572

ABSTRACT

The specific binding and regional brain pharmacokinetics of new fluorine-18 ([(18)F])-labeled radioligands for the vesicular monoamine transporter (VMAT2) were examined in the rat and primate brain. In the rat, 9-[(18)F]fluoropropyl-(+/-)-9-O-desmethyldihydrotetrabenazine ([(18)F]FP-(+/-)-DTBZ) showed better specific binding in the striatum than either (+)-[(11)C]dihydrotetrabenazine ((+)-[(11)C]DTBZ) or 9-[(18)F]fluoroethyl-(+/-)-9-O-desmethyldihydrotetrabenazine ([(18)F]FE-(+/-)-DTBZ). Using microPET, the regional brain pharmacokinetics of [(18)F]FE-(+/-)-DTBZ, [(18)F]FP-(+/-)-DTBZ and (+)-[(11)C]DTBZ were examined in the same monkey brain. (+)-[(11)C]DTBZ and [(18)F]FP-(+/-)-DTBZ showed similar brain uptakes and pharmacokinetics, with similar maximum striatum-to-cerebellum ratios (STR/CBL=5.24 and 5.15, respectively) that were significantly better than obtained for [(18)F]FE-(+/-)-DTBZ (STR/CBL=2.55). Striatal distribution volume ratios calculated using Logan plot analysis confirmed the better specific binding for the fluoropropyl compound [distribution volume ratio (DVR)=3.32] vs. the fluoroethyl compound (DVR=2.37). Using the resolved single active isomer of the fluoropropyl compound, [(18)F]FP-(+)-DTBZ, even better specific to nonspecific distribution was obtained, yielding the highest distribution volume ratio (DVR=6.2) yet obtained for a VMAT2 ligand in any species. The binding of [(18)F]FP-(+)-DTBZ to the VMAT2 was shown to be reversible by administration of a competing dose of unlabeled tetrabenazine. Metabolic defluorination was slow and minor for the [(18)F]fluoroalkyl-DTBZ ligands. The characteristics of high specific binding ratio, reversibility, metabolic stability and longer half-life of the radionuclide make [(18)F]FP-(+)-DTBZ a promising alternative VMAT2 radioligand suitable for widespread use in human positron emission tomography studies of monoaminergic innervation of the brain.


Subject(s)
Brain/metabolism , Fluorine Radioisotopes/pharmacokinetics , Tetrabenazine/analogs & derivatives , Vesicular Monoamine Transport Proteins/metabolism , Animals , Brain/diagnostic imaging , Haplorhini , Metabolic Clearance Rate , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tetrabenazine/pharmacokinetics , Tissue Distribution
2.
Nucl Med Biol ; 34(3): 239-46, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17383573

ABSTRACT

Labeling derivatives of dihydrotetrabenazine (DTBZ) with F-18 (T(1/2)=110 min) instead of C-11 (T(1/2)=20 min) would improve their utility and availability for imaging vesicular monoamine transporters (VMAT2) in clinical settings. The successful synthesis, reported previously, of two novel 9-fluoroalkyl(+/-)-DTBZ ligands prompted us to study the optically resolved active ligand 9-fluoropropyl-(+)-DTBZ (FP-(+)-DTBZ), which may have more promising characteristics. The inhibition constant (K(i)) estimated for FP-(+)-DTBZ (using [(3)H](+/-)-DTBZ as the labeled ligand in rat striatal homogenates) showed a lower value as compared to the racemic FP-(+/-)-DTBZ (0.10+/-0.01 vs 0.19+/-0.04 nM). The inactive isomer, FP-(-)-DTBZ, displayed a much lower binding affinity with a K(i) value >3000 nM. Biodistribution studies in mice after an iv injection of [(18)F]FP-(+)-DTBZ exhibited a ratio of striatum (ST, target) to cerebellum (CB, background) of 4.51 at 30 min postinjection, which is a higher value than previously obtained with the racemic ligand [(18)F]FP-(+/-)-DTBZ (ST/CB=2.95). Brain extraction at 30 min after the tracer injection in mice showed that >95% of the radioactivity corresponded to the parent, nonmetabolized, compound remaining in the ST, suggesting that the tracer has an excellent in vivo stability. Furthermore, localization of the tracer in the brain examined with ex vivo autoradiography displayed a typical distribution pattern consistent with VMAT2 sites. The highest labeling was observed in monoaminergic neuron regions (caudate putamen, olfactory tubercle, nucleus accumbens, substantia nigra, dorsal raphe and locus coerules). We also tested the selective labeling of this tracer at the dopamine neurons in unilateral-lesioned mice (treated with 6-hydroxydopamine). When [(18)F]FP-(+)-DTBZ and [(125)I]IPT ((N-(3'-iodopropen-2'-yl)-2-beta-carbomethoxy-3-beta-(4-chlorophenyl)tropane, a selective marker for dopamine transporters (DATs) in dopaminergic neurons) were simultaneously injected into lesioned mice, we observed an excellent correlation (r=0.95) for these tracers. From these findings, we conclude that [(18)F]FP-(+)-DTBZ is a sensitive and selective tracer for VMAT2 binding sites and it may be useful for in vivo evaluation of diseases relating to changes of monoamine neuronal integrity.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Fluorine Radioisotopes/pharmacokinetics , Tetrabenazine/analogs & derivatives , Vesicular Monoamine Transport Proteins/metabolism , Animals , Feasibility Studies , Fluorine Radioisotopes/chemistry , Male , Metabolic Clearance Rate , Mice , Mice, Inbred ICR , Organ Specificity , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Stereoisomerism , Tetrabenazine/chemistry , Tetrabenazine/pharmacokinetics , Tissue Distribution
3.
Nucl Med Biol ; 33(6): 685-94, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16934687

ABSTRACT

Imaging of vesicular monoamine transporter 2 (VMAT2) in the brain with [(11)C]-dihydrotetrabenazine (DTBZ) in conjunction with positron emission tomography (PET) has demonstrated its usefulness in the diagnosis and monitoring of neurodegenerative diseases such as Parkinson's disease and Huntington's disease. We report on the development of (18)F analogs of DTBZ with a longer half-life (t=110 vs. 20 min for C-11) to increase the availability of VMAT2 imaging agents for routine clinical studies with PET. Racemic 9-fluoroethyl (FE) and 9-fluoropropyl (FP)-9-desmethyl-DTBZ and the corresponding hydroxyl derivatives were successfully prepared. No-carrier-added racemic (18)F-DTBZ derivatives were synthesized by an [(18)F]fluoride displacement of the corresponding mesylates with good yields (30-40%) and high specific activity (SA=1500-2000 Ci/mmol). Racemic (+/-)-FE-DTBZ (6a) and (+/-)-FP-DTBZ (6b) displayed excellent binding affinities (K(i)=0.76 and 0.56 nM, respectively) for VMAT2 binding sites in rat striatal homogenates, whereas the known compounds (+/-)-DTBZ and (+/-)-tetrabenazine (TBZ) showed K(i) values of 1.7+/-0.2 and 1.3+/-0.1 nM, respectively. Consistently, racemic [(18)F]6a and [(18)F]6b exhibited K(d) values of 0.52 and 0.48 nM, respectively (based on an SA of 2000 Ci/mmol), for VMAT2 binding sites using mouse striatal homogenates. Both agents showed comparable binding densities with those obtained with [(3)H](+/-)-TBZ. Results of in vitro autoradiography with [(18)F]6b showed a distinct binding in the caudate putamen region consistent with the localization of VMAT2 in the mouse brain, which was blocked by nonradioactive TBZ efficiently. Biodistribution studies on mice after an intravenous injection of the tracer exhibited excellent brain uptakes (4.66% and 7.08% ID/g at 2 min for racemic [(18)F]6a and [(18)F]6b, respectively). It was determined that [(18)F]6b displayed a faster brain washout than [(18)F]6a did. As a result, [(18)F]6b yielded a better target-to-background ratio (striatum/cerebellum=3.0 and 1.7 at 30 min after an intravenous injection for [(18)F]6b and [(18)F]6a, respectively). The blocking study with the nonradioactive (+/-)-DTBZ clearly confirmed the in vivo competition and specificity of [(18)F]6b binding for VMAT2 sites. In conclusion, these findings strongly suggest that the novel racemic [(18)F]6b is potentially useful as a molecular imaging agent for VMAT2 binding sites in the brain. Further studies are warranted to assess the utility of these (18)F-labeled DTBZ derivatives as PET tracers for the diagnosis of various neurodegenerative diseases.


Subject(s)
Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , Tetrabenazine/analogs & derivatives , Vesicular Monoamine Transport Proteins/metabolism , Animals , Binding Sites , Male , Mice , Mice, Inbred ICR , Radiopharmaceuticals/chemical synthesis , Rats , Tetrabenazine/metabolism , Vesicular Monoamine Transport Proteins/analysis
4.
Org Biomol Chem ; 3(15): 2872-82, 2005 Aug 07.
Article in English | MEDLINE | ID: mdl-16032366

ABSTRACT

Bicyclic lactams derived from pyroglutamic acid provide a useful scaffold for synthesis of conformationally restricted analogues of lysine, ornithine and glutamine, as well as an Ala-Ala dipeptide analogue. Amino alcohol and carboxylic acid derivatives are accessible from a common intermediate. In this strategy, the bicyclic lactam system not only controls, but also facilitates the determination of the stereochemistry of the synthetic intermediates.


Subject(s)
Amino Acids/chemistry , Pyrrolidonecarboxylic Acid/chemistry , Mass Spectrometry , Molecular Conformation , Stereoisomerism
5.
Org Lett ; 6(2): 253-6, 2004 Jan 22.
Article in English | MEDLINE | ID: mdl-14723541

ABSTRACT

[reaction: see text] Scalemic acyclic alpha-(alkoxy)alkyl- and alpha-(N-carbamoyl)alkylcuprates prepared from organostannanes via organolithium reagents react with vinyl iodides, propargyl mesylates, and alpha,beta-enones to afford coupled products with enantioselectivities ranging from 0 to 99% ee depending upon cuprate reagent, substrate structure, solvent, and temperature. In general, lithium cuprates give higher chemical yields and lower enantioselectivities, while the trends are reversed for the corresponding zinc cuprate reagents.

6.
Org Biomol Chem ; 1(13): 2364-76, 2003 Jul 07.
Article in English | MEDLINE | ID: mdl-12945710

ABSTRACT

Alkylation reactions using alpha-halolactams or lactam enolates derived from bicyclic lactam templates can proceed with high endo- or exo- diastereoselectivity respectively. In the latter case, stereochemical correction by means of enolate generation and hindered phenol quench is possible with moderate efficiency. This protocol has been applied to the synthesis of protected penmacric acid and its analogues.


Subject(s)
Amino Acids/chemical synthesis , Pyrrolidinones/chemical synthesis , Pyrrolidonecarboxylic Acid/chemical synthesis , Alkylation , Chemistry, Organic/methods , Glycine/analogs & derivatives , Glycine/chemistry , Imines/chemistry , Models, Chemical , Molecular Structure , Pyrrolidonecarboxylic Acid/analogs & derivatives , Reproducibility of Results , Stereoisomerism
7.
Org Lett ; 4(9): 1599-602, 2002 May 02.
Article in English | MEDLINE | ID: mdl-11975638

ABSTRACT

[reaction: see text]. Metal carbenoid chemistry is used to convert delta-amino beta-ketoesters into 5-substituted 3-oxo prolines, which expands the utility of this class of polyfunctionalized chiral building blocks.


Subject(s)
Keto Acids/chemistry , Piperidines/chemistry , Piperidines/chemical synthesis , Proline/analogs & derivatives , Cholecystokinin/antagonists & inhibitors , Indicators and Reagents , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...