Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Soc Rev ; 53(1): 204-226, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38031452

ABSTRACT

Nuclear targeting of therapeutics provides a strategy for enhancing efficacy of molecules active in the nucleus and minimizing off-target effects. 'Active' nuclear-directed transport and efficient translocations across nuclear pore complexes provide the most effective means of maximizing nuclear localization. Nuclear-targeting systems based on nuclear localization signal (NLS) motifs have progressed significantly since the beginning of the current millennium. Here, we offer a roadmap for understanding the basic mechanisms of nuclear import in the context of actionable therapeutic design for developing NLS-therapeutics with improved treatment efficacy.


Subject(s)
Cell Nucleus , Nuclear Localization Signals , Active Transport, Cell Nucleus , Nuclear Localization Signals/metabolism
2.
Biomaterials ; 302: 122344, 2023 11.
Article in English | MEDLINE | ID: mdl-37857021

ABSTRACT

Intracellular pathogenic bacteria use immune cells as hosts for bacterial replication and reinfection, leading to challenging systemic infections including peritonitis. The spread of multidrug-resistant (MDR) bacteria and the added barrier presented by host cell internalization limit the efficacy of standard antibiotic therapies for treating intracellular infections. We present a non-antibiotic strategy to treat intracellular infections. Antimicrobial phytochemicals were stabilized and delivered by polymer-stabilized biodegradable nanoemulsions (BNEs). BNEs were fabricated using different phytochemicals, with eugenol-loaded BNEs (E-BNEs) affording the best combination of antimicrobial efficacy, macrophage accumulation, and biocompatibility. The positively-charged polymer groups of the E-BNEs bind to the cell surface of macrophages, facilitating the entry of eugenol that then kills the intracellular bacteria without harming the host cells. Confocal imaging and flow cytometry confirmed that this entry occurred mainly via cholesterol-dependent membrane fusion. As eugenol co-localized and interacted with intracellular bacteria, antibacterial efficacy was maintained. E-BNEs reversed the immunosuppressive effects of MRSA on macrophages. Notably, E-BNEs did not elicit resistance selection after multiple exposures of MRSA to sub-therapeutic doses. The E-BNEs were highly effective against a murine model of MRSA-induced peritonitis with better bacterial clearance (99 % bacteria reduction) compared to clinically-employed treatment with vancomycin. Overall, these findings demonstrate the potential of E-BNEs in treating peritonitis and other refractory intracellular infections.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Peritonitis , Mice , Animals , Eugenol/pharmacology , Eugenol/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polymers/pharmacology , Peritonitis/drug therapy , Peritonitis/microbiology , Microbial Sensitivity Tests
3.
Nanoscale ; 15(24): 10351-10359, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37288531

ABSTRACT

Vaccination through cellular transfection of nucleotide-based vaccines is a powerful approach to combatting disease. Plasmid DNA (pDNA) vaccines are particularly promising vectors for non-viral immunomodulation that afford high degrees of potency and flexibility. Versatile guanidinium-functionalized poly(oxanorbornene)imide (PONI-Guan) homopolymers were used to facilitate non-disruptive pDNA condensation into discrete polyplexes, enabling efficient in vitro transfection of endothelial cells and HD-11 macrophages. Translation of these vectors for vaccination of white leghorn chickens against Newcastle disease virus (NDV) elicited strong humoral immune responses against the virus. This approach presents a highly versatile method for targeted immunomodulation in vivo, with the potential for translatability as a non-viral vaccine platform.


Subject(s)
Chickens , Polymers , Animals , Chickens/genetics , Endothelial Cells , Plasmids/genetics , DNA/genetics , Vaccination
4.
J Control Release ; 357: 31-39, 2023 05.
Article in English | MEDLINE | ID: mdl-36948419

ABSTRACT

Bioorthogonal catalysis via transition metal catalysts (TMCs) enables the generation of therapeutics locally through chemical reactions not accessible by biological systems. This localization can enhance the efficacy of anticancer treatment while minimizing off-target effects. The encapsulation of TMCs into nanomaterials generates "nanozymes" to activate imaging and therapeutic agents. Here, we report the use of cationic bioorthogonal nanozymes to create localized "drug factories" for cancer therapy in vivo. These nanozymes remained present at the tumor site at least seven days after a single injection due to the interactions between cationic surface ligands and negatively charged cell membranes and tissue components. The prodrug was then administered systemically, and the nanozymes continuously converted the non-toxic molecules into active drugs locally. This strategy substantially reduced the tumor growth in an aggressive breast cancer model, with significantly reduced liver damage compared to traditional chemotherapy.


Subject(s)
Breast Neoplasms , Nanostructures , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Diagnostic Imaging , Catalysis , Cell Membrane
5.
ACS Nano ; 17(5): 4315-4326, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36802503

ABSTRACT

Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.


Subject(s)
Pneumonia , Polymers , Animals , Mice , RNA, Small Interfering , Polymers/metabolism , RNA, Double-Stranded/metabolism , Endosomes/metabolism , Pneumonia/therapy , Pneumonia/metabolism
6.
Pharmaceutics ; 15(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36678847

ABSTRACT

Current intracellular protein delivery strategies face the challenge of endosomal entrapment and consequent degradation of protein cargo. Methods to efficiently deliver proteins directly to the cytosol have the potential to overcome this hurdle. Here, we report the use of a straightforward approach of protein modification using citraconic anhydride to impart an overall negative charge on the proteins, enabling them to assemble with positively charged nano vectors. This strategy uses anhydride-modified proteins to electrostatically form polymer-protein nanocomposites with a cationic guanidinium-functionalized polymer. These supramolecular self-assemblies demonstrated the efficient cytosolic delivery of modified proteins through a membrane fusion-like mechanism. This approach was validated on five cell lines and seven proteins as cargo. Retention of protein function was confirmed through efficient cell killing via the intracellular enzymatic activity of RNase A. This platform provides a versatile, straightforward, and single-step method of protein modification and efficient direct cytosolic protein delivery.

7.
ACS Nano ; 16(5): 7323-7330, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35435664

ABSTRACT

Current strategies for the delivery of proteins into cells face general challenges of endosomal entrapment and concomitant degradation of protein cargo. Efficient delivery directly to the cytosol overcomes this obstacle: we report here the use of biotin-streptavidin tethering to provide a modular approach to the generation of nanovectors capable of a cytosolic delivery of biotinylated proteins. This strategy uses streptavidin to organize biotinylated protein and biotinylated oligo(glutamate) peptide into modular complexes that are then electrostatically self-assembled with a cationic guanidinium-functionalized polymer. The resulting polymer-protein nanocomposites demonstrate efficient cytosolic delivery of six biotinylated protein cargos of varying size, charge, and quaternary structure. Retention of protein function was established through efficient cell killing via delivery of the chemotherapeutic enzyme granzyme A. This platform represents a versatile and modular approach to intracellular delivery through the noncovalent tethering of multiple components into a single delivery vector.


Subject(s)
Biotin , Nanocomposites , Streptavidin/chemistry , Biotin/chemistry , Cytosol/metabolism , Proteins/chemistry , Polymers/chemistry
8.
Pharm Res ; 39(6): 1197-1204, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35297498

ABSTRACT

PURPOSE: Cytosolic delivery of proteins accesses intracellular targets for chemotherapy and immunomodulation. Current delivery systems utilize inefficient endosomal pathways of uptake and escape that lead to degradation of delivered cargo. Cationic poly(oxanorbornene)imide (PONI) polymers enable highly efficient cytosolic delivery of co-engineered proteins, but aggregation and denaturation in solution limits shelf life. In the present study we evaluate polymer-protein nanocomposite vehicles as candidates for lyophilization and point-of-care resuspension to provide a transferrable technology for cytosolic protein delivery. METHODS: Self-assembled nanocomposites of engineered poly(glutamate)-tagged (E-tagged) proteins and guanidinium-functionalized PONI homopolymers were generated, lyophilized, and stored for 2 weeks. After reconstitution and delivery, cytosolic access of E-tagged GFP cargo (GFPE15) was assessed through diffuse cytosolic and nuclear fluorescence, and cell killing with chemotherapeutic enzyme Granzyme A (GrAE10). Efficiency was quantified between freshly prepared and lyophilized samples. RESULTS: Reconstituted nanocomposites retained key structural features of freshly prepared assemblies, with minimal loss of material. Cytosolic delivery (> 80% efficiency of freshly prepared nanocomposites) of GFPE15 was validated in several cell lines, with intracellular access validated and quantified through diffusion into the nucleus. Delivery of GrAE10 elicited significant tumorigenic cell death. Intracellular access of cytotoxic protein was validated through cell viability. CONCLUSION: Reconstituted nanocomposites achieved efficient cytosolic delivery of protein cargo and demonstrated therapeutic applicability with delivery of GrAE10. Overall, this strategy represents a versatile and highly translatable method for cytosolic delivery of proteins.


Subject(s)
Polymers , Proteins , Cytosol/metabolism , Endosomes/metabolism , Freeze Drying , Polymers/chemistry , Proteins/chemistry
9.
Mater Horiz ; 9(5): 1489-1494, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35293903

ABSTRACT

Intracellular bacterial infections are difficult to treat, and in the case of Salmonella and related infections, can be life threatening. Antibiotic treatments for intracellular infections face challenges including cell penetration and intracellular degradation that both reduce antibiotic efficacy. Even when treatable, the increased dose of antibiotics required to counter infections can strongly impact the microbiome, compromising the native roles of beneficial non-pathogenic species. Bioorthogonal catalysis provides a new tool to combat intracellular infections. Catalysts embedded in the monolayers of gold nanoparticles (nanozymes) bioorthogonally convert inert antibiotic prodrugs (pro-antibiotics) into active species within resident macrophages. Targeted nanozyme delivery to macrophages was achieved through mannose conjugation and subsequent uptake VIA the mannose receptor (CD206). These nanozymes efficiently converted pro-ciprofloxacin to ciprofloxacin inside the macrophages, selectively killing pathogenic Salmonella enterica subsp. enterica serovar Typhimurium relative to non-pathogenic Lactobacillus sp. in a transwell co-culture model. Overall, this targeted bioorthogonal nanozyme strategy presents an effective treatment for intracellular infections, including typhoid and tuberculosis.


Subject(s)
Bacterial Infections , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Gold/pharmacology , Humans , Metal Nanoparticles/therapeutic use , Salmonella typhimurium
11.
Bioconjug Chem ; 32(5): 891-896, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33872490

ABSTRACT

Intracellular protein delivery is a transformative tool for biologics research and medicine. Delivery into the cytosol allows proteins to diffuse throughout the cell and access subcellular organelles. Inefficient delivery caused by endosomal entrapment is often misidentified as cytosolic delivery. This inaccuracy muddles what should be a key checkpoint in assessing delivery efficiency. Green fluorescent protein (GFP) is a robust cargo small enough to passively diffuse from the cytosol into the nucleus. Fluorescence of GFP in the nucleus is a direct readout for cytosolic access and effective delivery. Here, we highlight recent examples from the literature for the accurate assessment of cytosolic protein delivery using GFP fluorescence in the cytosol and nucleus.


Subject(s)
Bacterial Proteins/metabolism , Cell Nucleus/metabolism , Cytosol/metabolism , Luminescent Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Humans
12.
Trends Pharmacol Sci ; 41(10): 743-754, 2020 10.
Article in English | MEDLINE | ID: mdl-32891429

ABSTRACT

Protein-based therapeutics have unique therapeutic potential due to their specificity, potency, and low toxicity. The vast majority of intracellular applications of proteins require access to the cytosol. Direct entry to the cytosol is challenging due to the impermeability of the cell membrane to proteins. As a result, multiple strategies have focused on endocytic uptake of proteins. Endosomally entrapped cargo, however, can have very low escape efficiency, with protein degradation occurring in acidic endolysosomal compartments. In this review, we briefly discuss endosomal escape strategies and review the strategy of cell membrane fusion, a recent strategy for direct delivery of proteins into the cell cytoplasm.


Subject(s)
Drug Delivery Systems , Proteins , Cell Membrane , Cytosol , Endosomes
13.
J Am Chem Soc ; 142(9): 4349-4355, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32049533

ABSTRACT

Nanocarrier-mediated protein delivery is a promising strategy for fundamental research and therapeutic applications. However, the efficacy of the current platforms for delivery into cells is limited by endosomal entrapment of delivered protein cargo with concomitantly inefficient access to the cytosol and other organelles, including the nucleus. We report here a robust, versatile polymeric-protein nanocomposite (PPNC) platform capable of efficient (≥90%) delivery of proteins to the cytosol. We synthesized a library of guanidinium-functionalized poly(oxanorborneneimide) (PONI) homopolymers with varying molecular weights to stabilize and deliver engineered proteins featuring terminal oligoglutamate "E-tags". The polymers were screened for cytosolic delivery efficiency using imaging flow cytometry with cytosolic delivery validated using confocal microscopy and activity of the delivered proteins demonstrated through functional assays. These studies indicate that the PPNC platform provides highly effective and tunable cytosolic delivery over a wide range of formulations, making them robust agents for therapeutic protein delivery.


Subject(s)
Drug Carriers/metabolism , Integrases/metabolism , Luminescent Proteins/metabolism , Polyglutamic Acid/metabolism , Polymers/metabolism , Drug Carriers/chemical synthesis , Guanidines/chemical synthesis , Guanidines/metabolism , HEK293 Cells , HeLa Cells , Humans , Imides/chemical synthesis , Imides/metabolism , Nanocomposites/chemistry , Polymers/chemical synthesis , Protein Engineering , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...