Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 359: 121063, 2024 May.
Article in English | MEDLINE | ID: mdl-38704955

ABSTRACT

Due to the potential harm caused by emerging micro-pollutants to living organisms, contaminating water supplies by micro-pollutants like EDCs, pharmaceuticals, and microorganisms has become a concern in many countries. Considering both microbiological and micro-pollutant exposure risks associated with water use for agricultural/or household purposes, it is imperative to create a strategy for improving pollutant removal from treated wastewater that is both effective and affordable. Natural clay minerals efficiently remove contaminants from wastewater, though the pristine clay has less affinity to several organic pollutants. Hydrophilic polymers, viz., poly(ethylene glycol) (PEG), improve the dispersion of particles, flocculation processes, and surface properties. In this study, PEG grafted with attapulgite, thereby providing a high-specific surface-area, mesoporous materials for the adsorption of micro-pollutants like ciprofloxacin (CIP) and 17α-ethinylestradiol (EE2) at high rates. A gentle washing process regenerates the clay-polymer material several times with no performance loss, and the natural water implications show fair applicability of solid in decontaminating the CIP and EE2 in an aqueous medium. Further, greenly synthesized silver nanoparticles in situ disperse with the clay polymer efficiently remove the gram-positive and gram-negative bacterium viz., Bacillus subtilis, and Pseudomonas aeruginosa, which are commonly persistent in aquatic environments. The clay polymer outperformed a modified clay composite to eliminate microorganisms and organic micro-pollutants in significant quantities quickly. These results clearly show the importance of fibrous clay-polymer composite for water purification technologies.


Subject(s)
Clay , Polymers , Silver , Water Purification , Water Purification/methods , Polymers/chemistry , Clay/chemistry , Silver/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Bacteria
2.
Sci Total Environ ; 929: 172546, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636858

ABSTRACT

Micro-pollutants (specifically antibiotics and personal care products) and potential bacterial contamination pose a severe threat to human health and marine life. The study derives indigenous novel fibrous hydrophobic nanocomposite, efficient in decontaminating the micro-pollutants (tetracycline (TC) and bisphenol A (BPA)) and potential pathogens (S. pyogenes and E. coli) from aqueous wastes. A facile method synthesizes the fibrous attapulgite (ATP)- poly(4-vinylpyridine-co-styrene) (PVP) framework decorated in situ with the Ag0 nanoparticles (ATP@PVP/Ag0). A greener method using the Artocarpus heterophyllus leaf extract derives the Ag0(NPs). Various analytical methods extensively characterize the materials. A comprehensive study that includes pH, concentration, background electrolytes, and ionic strength reveals the sorptive removal insights of TC and BPA utilizing the ATP@PVP solid. The elimination of tetracycline (TC) and bisphenol A (BPA) agrees well with the pseudo-second-order kinetics. The pH 3.07 and 6.06 favor removing TC and BPA with the capacity of 10.86 mg/g and 17.36 mg/g at 25 °C. The hydrogen bonding and hydrophobic interactions predominate the sorption mechanism, and the material shows remarkable stability and reusability in repeated sorption/desorption operations. Similarly, the natural water implications and flow-bed system show fair applicability of solid in decontaminating the TC and BPA in an aqueous medium. Further, the material ATP@PVP/Ag0 exhibits very high inhibition of potential pathogens S. pyogenes and E. coli and optimizes the solid dose and solution pH.


Subject(s)
Benzhydryl Compounds , Nanocomposites , Phenols , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Phenols/analysis , Hydrophobic and Hydrophilic Interactions , Tetracycline/chemistry , Waste Disposal, Fluid/methods , Bacteria , Wastewater/chemistry , Wastewater/microbiology , Escherichia coli
3.
Nat Cell Biol ; 26(1): 41-42, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168771
4.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188984, 2023 11.
Article in English | MEDLINE | ID: mdl-37722512

ABSTRACT

Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.


Subject(s)
Dietary Fats , Neoplasms , Humans , Dietary Fats/adverse effects , Lipid Metabolism , Tumor Microenvironment , Neoplasms/pathology , Diet
5.
Sci Rep ; 13(1): 6209, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069316

ABSTRACT

In this work, five acrylonitrile adducts were screened for antibacterial activity against Gram-positive Bacillus subtilis, Microbial Type Culture Collection and Gene Bank (MTCC 1305) and Gram-negative Escherichia coli (MTCC 443). Synthesis was followed by aza-Michael addition reaction, where the acrylonitrile accepts an electron pair from the respective amines and results in the formation of n-alkyliminobis-propionitrile and n-alkyliminopropionitrile under microwave irradiation. Characterization of the compounds were performed using Fourier Transform Infrared (FTIR), Proton Nuclear Magnetic Resonance (1H NMR) and Electrospray Ionisation Mass Spectrometry (ESI-MS). The particle size characterization was done by Dynamic Light Scattering (DLS) technique. The antibacterial study showed higher inhibition rate for both Gram-positive and Gram-negative bacteria. The antibacterial ability was found to be dose dependent. The minimum inhibitory concentration against both bacteria were found to be 1, 3, 0.4, 1, 3 µl/ml for E. coli and 6, 6, 0.9, 0.5, 5 µl/ml for B. subtilis. Time-kill kinetics evaluation showed that the adducts possess bacteriostatic action. Further it was evaluated for high-throughput in vitro assays to determine the compatibility of the adducts for drug delivery. The haemolytic and thrombolytic activity was analysed against normal mouse erythrocytes. The haemolytic activity showed prominent results, and thereby projecting this acrylonitrile adducts as potent antimicrobial and haemolytic agent.


Subject(s)
Acrylonitrile , Anti-Infective Agents , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Acrylonitrile/pharmacology , Fibrinolytic Agents , Escherichia coli , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Bacillus subtilis
7.
Blood ; 139(9): 1340-1358, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34788382

ABSTRACT

Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. In this study, we found that the silencing of protein phosphatase 2A (PP2A) directly blocks differentiation in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling revealed that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent, OSU-2S, in parallel with genetic approaches, we discovered that PP2A enforced c-Myc and p21 dependent terminal differentiation, proliferation arrest, and apoptosis in AML. Finally, we demonstrated that PP2A activation decreased leukemia-initiating stem cells, increased leukemic blast maturation, and improved overall survival in murine Tet2-/-Flt3ITD/WT and human cell-line derived xenograft AML models in vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Leukemia, Myeloid, Acute/metabolism , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Knockout , Protein Phosphatase 2/genetics , Proto-Oncogene Proteins c-myc/genetics
8.
Blood Adv ; 5(16): 3152-3162, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34424320

ABSTRACT

Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.


Subject(s)
Hematologic Neoplasms , Immunoconjugates , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Mantle-Cell , Animals , Antibodies, Monoclonal , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Mice
9.
AAPS J ; 22(4): 92, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32676788

ABSTRACT

In this study, we characterized the pharmacokinetics of OSU-2S, a fingolimod-derived, non-immunosuppressive phosphatase activator, in mice, rats, and dogs, as well as tolerability and food effects in dogs. Across all species tested, plasma protein binding for OSU-2S was > 99.5%, and metabolic stability and hepatic intrinsic clearance were in the moderate range. OSU-2S did not significantly modulate CYP enzyme activity up until 50 µM, and Caco-2 data suggested low permeability with active efflux at 2 µM. Apparent oral bioavailability in mice was 16% and 69% at 10 and 50 mg/kg, respectively. In rats, bioavailability was 24%, 35%, and 28% at 10, 30, and 100 mg/kg, respectively, while brain/plasma ratio was 36 at 6-h post-dose at 30 mg/kg. In dogs, OSU-2S was well tolerated with oral capsule bioavailability of 27.5%. Plasma OSU-2S exposures increased proportionally over a 2.5-20 mg/kg dose range. After 4 weeks of 3 times weekly, oral administration (20 mg/kg), plasma AUClast (26.1 µM*h), and Cmax (0.899 µM) were nearly 2-fold greater than those after 1 week of dosing, and no food effects were observed. The elimination half-life (29.7 h), clearance (22.9 mL/min/kg), and plasma concentrations of repeated oral doses support a 3-times weekly dosing schedule in dogs. No significant CBC, serum biochemical, or histopathological changes were observed. OSU-2S has favorable oral PK properties similar to fingolimod in rodents and dogs and is well tolerated in healthy animals. This work supports establishing trials of OSU-2S efficacy in dogs with spontaneous tumors to guide its clinical development as a cancer therapeutic for human patients.


Subject(s)
Data Analysis , Fingolimod Hydrochloride/pharmacokinetics , Immunosuppressive Agents/pharmacokinetics , Propylene Glycols/pharmacokinetics , Sphingosine/analogs & derivatives , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Dogs , Dose-Response Relationship, Drug , Fingolimod Hydrochloride/administration & dosage , Haplorhini , Humans , Immunosuppressive Agents/administration & dosage , Male , Mice , Mice, Inbred C57BL , Propylene Glycols/administration & dosage , Rats , Rats, Sprague-Dawley , Sphingosine/administration & dosage , Sphingosine/pharmacokinetics
10.
Mol Cancer Ther ; 19(4): 1018-1030, 2020 04.
Article in English | MEDLINE | ID: mdl-32024684

ABSTRACT

Natural killer (NK) cells play a pivotal role in controlling cancer. Multiple extracellular receptors and internal signaling nodes tightly regulate NK activation. Cyclin-dependent kinases of the mediator complex (CDK8 and CDK19) were described as a signaling intermediates in NK cells. Here, we report for the first time the development and use of CDK8/19 inhibitors to suppress phosphorylation of STAT1S727 in NK cells and to augment the production of the cytolytic molecules perforin and granzyme B (GZMB). Functionally, this resulted in enhanced NK-cell-mediated lysis of primary leukemia cells. Treatment with the CDK8/19 inhibitor BI-1347 increased the response rate and survival of mice bearing melanoma and breast cancer xenografts. In addition, CDK8/19 inhibition augmented the antitumoral activity of anti-PD-1 antibody and SMAC mimetic therapy, both agents that promote T-cell-mediated antitumor immunity. Treatment with the SMAC mimetic compound BI-8382 resulted in an increased number of NK cells infiltrating EMT6 tumors. Combination of the CDK8/19 inhibitor BI-1347, which augments the amount of degranulation enzymes, with the SMAC mimetic BI-8382 resulted in increased survival of mice carrying the EMT6 breast cancer model. The observed survival benefit was dependent on an intermittent treatment schedule of BI-1347, suggesting the importance of circumventing a hyporesponsive state of NK cells. These results suggest that CDK8/19 inhibitors can be combined with modulators of the adaptive immune system to inhibit the growth of solid tumors, independent of their activity on cancer cells, but rather through promoting NK-cell function.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/drug therapy , Melanoma, Experimental/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Apoptosis , Breast Neoplasms/enzymology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Proliferation , Cytotoxicity, Immunologic/immunology , Female , Humans , Killer Cells, Natural/drug effects , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Melanoma, Experimental/enzymology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Phosphorylation , STAT1 Transcription Factor/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Blood ; 134(5): 432-444, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31151986

ABSTRACT

Chronic lymphocytic leukemia (CLL) occurs in 2 major forms: aggressive and indolent. Low miR-29b expression in aggressive CLL is associated with poor prognosis. Indiscriminate miR-29b overexpression in the B-lineage of mice causes aberrance, thus warranting the need for selective introduction of miR-29b into B-CLL cells for therapeutic benefit. The oncofetal antigen receptor tyrosine kinase orphan receptor 1 (ROR1) is expressed on malignant B-CLL cells, but not normal B cells, encouraging us with ROR1-targeted delivery for therapeutic miRs. Here, we describe targeted delivery of miR-29b to ROR1+ CLL cells leading to downregulation of DNMT1 and DNMT3A, modulation of global DNA methylation, decreased SP1, and increased p21 expression in cell lines and primary CLL cells in vitro. Furthermore, using an Eµ-TCL1 mouse model expressing human ROR1, we report the therapeutic benefit of enhanced survival via cellular reprograming by downregulation of DNMT1 and DNMT3A in vivo. Gene expression profiling of engrafted murine leukemia identified reprogramming of cell cycle regulators with decreased SP1 and increased p21 expression after targeted miR-29b treatment. This finding was confirmed by protein modulation, leading to cell cycle arrest and survival benefit in vivo. Importantly, SP1 knockdown results in p21-dependent compensation of the miR-29b effect on cell cycle arrest. These studies form a basis for leukemic cell-targeted delivery of miR-29b as a promising therapeutic approach for CLL and other ROR1+ B-cell malignancies.


Subject(s)
Cell Cycle Checkpoints/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , MicroRNAs/administration & dosage , MicroRNAs/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Survival Rate , Theranostic Nanomedicine , Treatment Outcome , Xenograft Model Antitumor Assays
12.
Haematologica ; 103(8): 1288-1297, 2018 08.
Article in English | MEDLINE | ID: mdl-29773600

ABSTRACT

Diseases with clonal hematopoiesis such as myelodysplastic syndrome and acute myeloid leukemia have high rates of relapse. Only a small subset of acute myeloid leukemia patients are cured with chemotherapy alone. Relapse in these diseases occurs at least in part due to the failure to eradicate leukemic stem cells or hematopoietic stem cells in myelodysplastic syndrome. CD123, the alpha chain of the interleukin-3 receptor heterodimer, is expressed on the majority of leukemic stem cells and myelodysplastic syndrome hematopoietic stem cells and in 80% of acute myeloid leukemia. Here, we report indiscriminate killing of CD123+ normal and acute myeloid leukemia / myelodysplastic syndrome cells by SL-401, a diphtheria toxin interleukin-3 fusion protein. SL-401 induced cytotoxicity of CD123+ primary cells/blasts from acute myeloid leukemia and myelodysplastic syndrome patients but not CD123- lymphoid cells. Importantly, SL-401 was highly active even in cells expressing low levels of CD123, with minimal effect on modulation of the CD123 target in acute myeloid leukemia. SL-401 significantly prolonged survival of leukemic mice in acute myeloid leukemia patient-derived xenograft mouse models. In addition to primary samples, studies on normal cord blood and healthy marrow show that SL-401 has activity against normal hematopoietic progenitors. These findings indicate potential use of SL-401 as a "bridge-to-transplant" before allogeneic hematopoietic cell transplantation in acute myeloid leukemia / myelodysplastic syndrome patients.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Recombinant Fusion Proteins/pharmacology , Animals , Cell Line, Tumor , Heterografts , Humans , Interleukin-3 Receptor alpha Subunit/analysis , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Recombinant Fusion Proteins/therapeutic use , Tumor Cells, Cultured
13.
FEBS Lett ; 590(23): 4223-4232, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27714782

ABSTRACT

In this study, we investigated the regions in the alternatively spliced C2 insert of nonmuscle myosin (NM) II-C conferring unique functional properties to the protein. We used constructs carrying deletions within different regions of C2 in neuronal cells; namely, the polar N terminus, the proline/serine-rich middle, and the nonpolar C terminus. We compared the wild-type NM II-C2 and deletion mutants with respect to ATPase activity, coassembly with NM II-B, regulation by myosin light-chain kinase (MLCK), and solubility, to determine the C2 region(s) involved in these processes. In addition, we examined the ability of the mutants to rescue the neurite-shortening phenotype upon NM II-C2 knockdown in Neuro-2a cells. Our data highlight the importance of the polar N terminus in NM II-C2 function.


Subject(s)
Amino Acids/chemistry , Myosin Type II/chemistry , Myosin Type II/metabolism , Adenosine Triphosphatases/metabolism , Alternative Splicing , Animals , Cell Line, Tumor , Gene Knockdown Techniques , Mice , Myosin Type II/deficiency , Myosin Type II/genetics , Neurites/metabolism , Sequence Deletion , Solubility , Structure-Activity Relationship
14.
Sci Rep ; 6: 22334, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923536

ABSTRACT

Some earlier studies have reported an alternative mode of microRNA-target interaction. We detected target regions within mRNA transcripts from AGO PAR-CLIP that did not contain any conventional microRNA seed pairing but only had non-conventional binding sites with microRNA 3' end. Our study from 7 set of data that measured global protein fold change after microRNA transfection pointed towards the association of target protein fold change with 6-mer and 7-mer target sites involving microRNA 3' end. We developed a model to predict the degree of microRNA target regulation in terms of protein fold changes from the number of different conventional and non-conventional target sites present in the target, and found significant correlation of its output with protein expression changes. We validated the effect of non-conventional interactions with target by modulating the abundance of microRNA in a human breast cancer cell line MCF-7. The validation was done using luciferase assay and immunoblot analysis for our predicted non-conventional microRNA-target pair WNT1 (3' UTR) and miR-367-5p and immunoblot analysis for another predicted non-conventional microRNA-target pair MYH10 (coding region) and miR-181a-5p. Both experiments showed inhibition of targets by transfection of microRNA mimics that were predicted to have only non-conventional sites.


Subject(s)
Binding Sites , Computational Biology/methods , Gene Expression Regulation , MicroRNAs/genetics , Models, Biological , RNA Interference , 3' Untranslated Regions , 5' Untranslated Regions , Binding Sites/genetics , Cell Line , Gene Expression , Genes, Reporter , Humans , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/genetics , Nonmuscle Myosin Type IIB/chemistry , Nonmuscle Myosin Type IIB/genetics , Nucleotide Motifs , Open Reading Frames , Protein Binding , Protein Folding , RNA, Messenger/chemistry , RNA, Messenger/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL