Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 63(7): 919-931, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35428891

ABSTRACT

Guanosine tetraphosphate (ppGpp) is known as an alarmone that mediates bacterial stress responses. In plants, ppGpp is synthesized in chloroplasts from GTP and ATP and functions as a regulator of chloroplast gene expression to affect photosynthesis and plant growth. This observation indicates that ppGpp metabolism is closely related to chloroplast function, but the regulation of ppGpp and its role in chloroplast differentiation are not well understood. In rice, ppGpp directly inhibits plastidial guanylate kinase (GKpm), a key enzyme in GTP biosynthesis. GKpm is highly expressed during early leaf development in rice, and the GKpm-deficient mutant, virescent-2 (v2), develops chloroplast-deficient chlorotic leaves under low-temperature conditions. To examine the relationship between GTP synthesis and ppGpp homeostasis, we generated transgenic rice plants over-expressing RSH3, a protein known to act as a ppGpp synthase. When RSH3 was overexpressed in v2, the leaf chlorosis was more severe. Although the RSH3 overexpression in the wild type caused no visible effects, pulse amplitude modulation fluorometer measurements indicated that photosynthetic rates were reduced in this line. This finding implies that the regulation of ppGpp synthesis in rice is involved in the maintenance of the GTP pool required to regulate plastid gene expression during early chloroplast biogenesis. We further investigated changes in the expressions of RelA/SpoT Homolog (RSH) genes encoding ppGpp synthases and hydrolases during the same period. Comparing the expression of these genes with the cellular ppGpp content suggests that the basal ppGpp level is determined by the antagonistic action of multiple RSH enzymatic activities during early leaf development in rice.


Subject(s)
Guanosine Tetraphosphate , Oryza , Chloroplasts/metabolism , Guanosine Tetraphosphate/genetics , Guanosine Tetraphosphate/metabolism , Guanosine Triphosphate/metabolism , Ligases/metabolism , Oryza/genetics , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
2.
Planta ; 255(2): 48, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35079894

ABSTRACT

MAIN CONCLUSION: The Arabidopsis ppGpp-overproducing mutant indicates a larger biomass than wild type by modulated amino-acid metabolism under nitrogen-limiting conditions. The regulatory nucleotide, guanosine 3', 5'-bis(pyrophosphate; ppGpp)-originally identified in Escherichia coli-controls gene expression and enzyme activities in the bacteria and plastids of plant cells. We recently reported that the ppGpp over-producing mutant of Arabidopsis thaliana had a larger shoot weight than wild type (WT), especially under nutrient-deficient conditions. However, the mechanisms behind the influence of ppGpp on plant growth and biomass remain elusive. To understand the impact of the ppGpp accumulation on plant growth, we characterized metabolic changes in the ppGpp-overproducing mutant upon transition from nitrogen-rich to nitrogen-limiting concentrations. We found that the fresh weight of the mutant was significantly larger than WT when the total nitrogen source (KNO3 and NH4NO3) concentration was below 0.9 mM. When the nitrogen content in the medium decreased, aromatic and branched-chain amino acids increased in WT due to accelerated protein degradation and/or attenuated protein synthesis. These amino-acid levels in the ppGpp over-accumulating mutant decreased upon nitrogen deficiency. The results suggest that the ppGpp-overaccumulation affects amino-acid and protein homeostasis and facilitates growth under nitrogen-limiting conditions.


Subject(s)
Arabidopsis , Guanosine Tetraphosphate , Arabidopsis/genetics , Biomass , Escherichia coli , Nitrogen
3.
Biochem Biophys Res Commun ; 394(1): 36-41, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20170642

ABSTRACT

A highly hydrophilic, glutamate-rich protein was identified in the aqueous phenol extract from the cytosolic fraction of brine shrimp (Artemia franciscana) diapausing cysts and termed Artemia phenol soluble protein (PSP). Mass spectrometric analysis revealed the presence of many protein peaks around m/z 11,000, separated by 129 atomic mass units; this value corresponds to that of glutamate, which is strongly suggestive of heterogeneous polyglutamylation. Polyglutamylation has long been known as the functionally important post-translational modification of tubulins, which carry poly(L-glutamic acid) chains of heterogeneous length branching off from the main chain at the gamma-carboxy groups of a few specific glutamate residues. In Artemia PSP, however, Edman degradation of enzymatic peptides revealed that at least 13, and presumably 16, glutamate residues were modified by the attachment of a single L-glutamate, representing a hitherto undescribed type of post-translational modification: namely, multiple gamma-glutamylation or the addition of a large number of glutamate residues along the polypeptide chain. Although biological significance of PSP and its modification is yet to be established, suppression of in vitro thermal aggregation of lactate dehydrogenase by glutamylated PSP was observed.


Subject(s)
Artemia/metabolism , Polyglutamic Acid/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Amino Acid Sequence , Animals , Molecular Sequence Data , Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...