Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Conscious Cogn ; 117: 103608, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042119

ABSTRACT

Acetylcholine is a neurotransmitter and neuromodulator involved in a variety of cognitive functions. Additionally, acetylcholine is involved in the regulation of REM sleep: cholinergic neurons in the brainstem and basal forebrain project to and innervate wide areas of the cerebral cortex, and reciprocally interact with other neuromodulatory systems, to produce the sleep-wake cycle and different sleep stages. Consciousness and cognition vary considerably across and within sleep stages, with metacognitive capacity being strikingly reduced even during aesthetically and emotionally rich dream experiences. A notable exception is the phenomenon of lucid dreaming-a rare state whereby waking levels of metacognitive awareness are restored during sleep-resulting in individuals becoming aware of the fact that they are dreaming. The role of neurotransmitters in these fluctuations of consciousness and cognition during sleep is still poorly understood. While recent studies using acetylcholinesterase inhibitors suggest a potential role of acetylcholine in the occurrence of lucid dreaming, the underlying mechanisms by which this effect is produced remains un-modelled and unknown; with the causal link between cholinergic mechanisms and upstream psychological states being complex and elusive. Several theories and approaches targeting the association between acetylcholine and metacognition during wakefulness and sleep are highlighted in this review, moving through microscopic, mesoscopic and macroscopic levels of analysis to detail this phenomenon at several organisational scales. Several exploratory hypotheses will be developed to guide future research towards fully articulating how metacognition is affected by activity at the acetylcholine receptor.


Subject(s)
Metacognition , Humans , Metacognition/physiology , Acetylcholine , Acetylcholinesterase , Sleep/physiology , Dreams/physiology , Wakefulness/physiology
2.
Cereb Cortex ; 33(4): 1186-1206, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35353185

ABSTRACT

Although hemispheric lateralization of creativity has been a longstanding topic of debate, the underlying neurocognitive mechanism remains poorly understood. Here we designed 2 types of novel stimuli-"novel useful and novel useless," adapted from "familiar useful" designs taken from daily life-to demonstrate how the left and right medial temporal lobe (MTL) respond to novel designs of different usefulness. Taking the "familiar useful" design as a baseline, we found that the right MTL showed increased activation in response to "novel useful" designs, followed by "novel useless" ones, while the left MTL only showed increased activation in response to "novel useful" designs. Calculating an asymmetry index suggests that usefulness processing is predominant in the left MTL, whereas the right MTL is predominantly involved in novelty processing. Moreover, the left parahippocampal gyrus (PHG) showed stronger functional connectivity with the anterior cingulate cortex when responding to "novel useless" designs. In contrast, the right PHG showed stronger connectivity with the amygdala, midbrain, and hippocampus. Critically, multivoxel representational similarity analyses revealed that the left MTL was more effective than the right MTL at distinguishing the usefulness differences in novel stimuli, while representational patterns in the left PHG positively predicted the post-behavior evaluation of "truly creative" products. These findings suggest an apparent dissociation of the left and right MTL in integrating the novelty and usefulness information and novel associative processing during creativity evaluation, respectively. Our results provide novel insights into a longstanding and controversial question in creativity research by demonstrating functional lateralization of the MTL in processing novel associations.


Subject(s)
Magnetic Resonance Imaging , Temporal Lobe , Magnetic Resonance Imaging/methods , Temporal Lobe/physiology , Hippocampus/physiology , Parahippocampal Gyrus/physiology , Creativity , Brain Mapping
3.
Curr Biol ; 31(7): 1417-1427.e6, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33607035

ABSTRACT

Dreams take us to a different reality, a hallucinatory world that feels as real as any waking experience. These often-bizarre episodes are emblematic of human sleep but have yet to be adequately explained. Retrospective dream reports are subject to distortion and forgetting, presenting a fundamental challenge for neuroscientific studies of dreaming. Here we show that individuals who are asleep and in the midst of a lucid dream (aware of the fact that they are currently dreaming) can perceive questions from an experimenter and provide answers using electrophysiological signals. We implemented our procedures for two-way communication during polysomnographically verified rapid-eye-movement (REM) sleep in 36 individuals. Some had minimal prior experience with lucid dreaming, others were frequent lucid dreamers, and one was a patient with narcolepsy who had frequent lucid dreams. During REM sleep, these individuals exhibited various capabilities, including performing veridical perceptual analysis of novel information, maintaining information in working memory, computing simple answers, and expressing volitional replies. Their responses included distinctive eye movements and selective facial muscle contractions, constituting correctly answered questions on 29 occasions across 6 of the individuals tested. These repeated observations of interactive dreaming, documented by four independent laboratory groups, demonstrate that phenomenological and cognitive characteristics of dreaming can be interrogated in real time. This relatively unexplored communication channel can enable a variety of practical applications and a new strategy for the empirical exploration of dreams.


Subject(s)
Communication , Dreams/physiology , Dreams/psychology , Research Personnel , Research Subjects/psychology , Researcher-Subject Relations , Sleep, REM/physiology , Adolescent , Adult , Female , Humans , Male , Polysomnography , Young Adult
4.
Psychiatr Res Clin Pract ; 3(1): 12-28, 2021.
Article in English | MEDLINE | ID: mdl-35174319

ABSTRACT

OBJECTIVE: This article offers a philosophical thesis for psychiatric disorders that rests upon some simple truths about the mind and brain. Specifically, it asks whether the dual aspect monism-that emerges from sleep research and theoretical neurobiology-can be applied to pathophysiology and psychopathology in psychiatry. METHODS: Our starting point is that the mind and brain are emergent aspects of the same (neuronal) dynamics; namely, the brain-mind. Our endpoint is that synaptic dysconnection syndromes inherit the same dual aspect; namely, aberrant inference or belief updating on the one hand, and a failure of neuromodulatory synaptic gain control on the other. We start with some basic considerations from sleep research that integrate the phenomenology of dreaming with the neurophysiology of sleep. RESULTS: We then leverage this treatment by treating the brain as an organ of inference. Our particular focus is on the role of precision (i.e., the representation of uncertainty) in belief updating and the accompanying synaptic mechanisms. CONCLUSIONS: Finally, we suggest a dual aspect approach-based upon belief updating (i.e., mind processes) and its neurophysiological implementation (i.e., brain processes)-has a wide explanatory compass for psychiatry and various movement disorders. This approach identifies the kind of pathophysiology that underwrites psychopathology-and points to certain psychotherapeutic and psychopharmacological targets, which may stand in mechanistic relation to each other.

5.
Philos Trans R Soc Lond B Biol Sci ; 376(1817): 20190697, 2021 02.
Article in English | MEDLINE | ID: mdl-33308070

ABSTRACT

Metacognitive reflections on one's current state of mind are largely absent during dreaming. Lucid dreaming as the exception to this rule is a rare phenomenon; however, its occurrence can be facilitated through cognitive training. A central idea of respective training strategies is to regularly question one's phenomenal experience: is the currently experienced world real, or just a dream? Here, we tested if such lucid dreaming training can be enhanced with dream-like virtual reality (VR): over the course of four weeks, volunteers underwent lucid dreaming training in VR scenarios comprising dream-like elements, classical lucid dreaming training or no training. We found that VR-assisted training led to significantly stronger increases in lucid dreaming compared to the no-training condition. Eye signal-verified lucid dreams during polysomnography supported behavioural results. We discuss the potential mechanisms underlying these findings, in particular the role of synthetic dream-like experiences, incorporation of VR content in dream imagery serving as memory cues, and extended dissociative effects of VR session on subsequent experiences that might amplify lucid dreaming training during wakefulness. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.


Subject(s)
Dreams , Virtual Reality , Humans
6.
Conscious Cogn ; 84: 102988, 2020 09.
Article in English | MEDLINE | ID: mdl-32768920

ABSTRACT

Lucid dreaming-the phenomenon of experiencing waking levels of self-reflection within one's dreams-is associated with more wake-like levels of neural activation in prefrontal brain regions. In addition, alternating periods of wakefulness and sleep might increase the likelihood of experiencing a lucid dream. Here we investigate the association between sleep fragmentation and lucid dreaming, with a multi-centre study encompassing four different investigations into subjective and objective measures of sleep fragmentation, nocturnal awakenings, sleep quality and polyphasic sleep schedules. Results across these four studies provide a more nuanced picture into the purported connection between sleep fragmentation and lucid dreaming: While self-assessed numbers of awakenings, polyphasic sleep and physiologically validated wake-REM sleep transitions were associated with lucid dreaming, neither self-assessed sleep quality, nor physiologically validated numbers of awakenings were. We discuss these results, and their underlying neural mechanisms, within the general question of whether sleep fragmentation and lucid dreaming share a causal link.


Subject(s)
Dreams/physiology , Metacognition/physiology , Sleep Deprivation/physiopathology , Sleep, REM/physiology , Wakefulness/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult
7.
Front Hum Neurosci ; 11: 89, 2017.
Article in English | MEDLINE | ID: mdl-28316568

ABSTRACT

Ponto-Geniculo-Occipital (PGO) waves are biphasic field potentials identified in a range of mammalian species that are ubiquitous with sleep, but can also be identified in waking perception and eye movement. Their role in REM sleep and visual perception more broadly may constitute a promising avenue for further research, however what was once an active field of study has recently fallen into stasis. With the reality that invasive recordings performed on animals cannot be replicated in humans; while animals themselves cannot convey experience to the extent required to elucidate how PGO waves factor into awareness and behavior, innovative solutions are required if significant research outcomes are to ever be realized. Advances in non-invasive imaging technologies and sophistication in imaging methods now offer substantial scope to renew the study of the electrophysiological substrates of waking and dreaming perception. Among these, Magnetoencephalogram (MEG) stands out through its capacity to measure deep brain activations with high temporal resolution. With the current trend in sleep and dream research to produce translational findings of psychopathological and medical significance, in addition to the clear links that PGO wave generation sites share, pharmacologically, with receptors involved in expression of mental illness; there is a strong case to support scientific research into PGO waves and develop a functional understanding of their broader role in human perception.

SELECTION OF CITATIONS
SEARCH DETAIL
...