Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chem ; 93(51): 16981-16986, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34907771

ABSTRACT

Frontal affinity chromatography is a powerful, underappreciated technique for the qualitative (screening) and quantitative (Kd determination) evaluation of biological interactions. Its development has been previously hampered by its sample consumption, limited throughput, and lack of dedicated instrumentation especially at a miniaturized scale. This work describes two original experimental devices allowing nano-frontal affinity chromatography titrations (nano-FAC) to be automatically implemented in the time-saving staircase mode. The first nano-FAC system utilizes a capillary electrophoresis device (7100 CE Agilent system) in the pressurization mode with in situ UV detection. The second nano-FAC experimental setup implements a nano-LC device (Ultimate 3000 Thermo) modified with a 10-port valve equipped with two superloops (loop volume, 5 µL) operating alternatively and automatically in a single run. The benefits and drawbacks of each approach are exemplified using two model protein-ligand interactions (concanavalin A-mannose and concanavalin A-glucose). The two methods result in concordant dissociation constants (Kd) and number of active site (Bact) values, obtained in a fully automated manner, with low sample consumption and good throughput.


Subject(s)
Electrophoresis, Capillary , Chromatography, Affinity , Ligands
2.
J Chromatogr A ; 1657: 462567, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34601258

ABSTRACT

Affinity chromatography is a powerful technique to identify and quantify weak ligand-protein interactions (Kd in the range of mM to 0.1µM). In some fields such as Fragment Based Drug Discovery, the detection of very weak affinities (mM) is of utmost importance since weak ligands can be good starting points for the conception of high affinity ligands. However, the identification of such weak ligands can be hampered by the limited bulk density of active target grafted onto the support. At the same time, downscaling the chromatographic column is of utmost interest when scarce and/or expensive proteins are targeted. In this context, we herein present a novel approach of protein immobilization to improve the bulk density of active protein grafted onto organic capillary monolithic columns. The proposed approach is based on the streptavidin-biotin interaction and consists of successive grafting steps of biotinylated target protein onto streptavidin layers through a multi-layering process. Concanavalin A was used as model protein. The study focuses on the optimization of the grafting conditions to maximize the amount of active protein during the multi-layering process and highlights the impact of the biotinylation ratio of the protein. It is demonstrated that a 3-layer grafting process allows to improve the bulk density of active sites by a 2-fold factor compared to a single layer. This improvement in protein density allows to increase the affinity range of this technique to the millimolar range.


Subject(s)
Biotin , Proteins , Chromatography, Affinity , Chromatography, Liquid , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL