Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(12): A746-A757, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252851

ABSTRACT

Sidewall emission of a micro-scale light emitting diode (micro-LED) improves the light extraction efficiency, but it causes mismatched angular distributions between AlGaInP-based red micro-LED and InGaN-based blue/green counterparts due to material difference. As a result, color shift of RGB micro-LED displays may become visually noticeable. To address this issue, we first analyze the angular distributions of RGB micro-LEDs and obtain good agreement between simulation and experiment. Next, we propose a device structure with top black matrix and taper angle in micro-LEDs, which greatly suppresses the color shift while keeping a reasonably high light extraction efficiency.

2.
Opt Express ; 26(23): 29735-29743, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30469934

ABSTRACT

We formulated a high birefringence, large dielectric anisotropy, UV stable, and low absorption loss nematic liquid crystal mixture, named UCF-15, for mid-wave infrared (MWIR) applications. To achieve fast response time, we fabricated a polymer network liquid crystal (PNLC) using UCF-15 as host. At 40°C operating temperature, our PNLC shows 2π phase change at λ = 4 µm, submillisecond response time, and over 98% transmittance in the 3.8 to 5.1 µm region. Potential applications of this PNLC phase modulator for high speed laser beam steering, adaptive optics, and optical tweezer are foreseeable.

3.
Opt Lett ; 43(4): 823-826, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29444003

ABSTRACT

Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.

4.
Sci Rep ; 7(1): 16260, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176729

ABSTRACT

The performance of liquid crystal (LC) spatial light modulators depends critically on the amount of cumulative phase change. However, for regular phase modulators, a large phase change comes with a slow time response penalty. A multi-layer liquid crystal (LC) spatial light modulator offers a large phase change while keeping fast response time due to the decoupling between phase change and time response through engineered sub-micron scaffold. Here, we demonstrate specially designed 2- and 3-layer LC cells which can achieve 4 times and 7 times faster response time than that of conventional single-layer LC phase modulator of equivalent thickness, respectively. A versatile two-photon laser lithography is employed for LC cell scaffolding to accurately verify theoretical predictions with experimental measurements.

5.
Opt Express ; 25(19): 22404-22410, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-29041551

ABSTRACT

We demonstrated two liquid crystal diffractive waveplates: one optimized for near-infrared (1.06 µm), and another for mid-wave infrared (MWIR, 3~5 µm). By employing a low loss liquid crystal mixture UCF-M3, whose absorption loss is below 2% in the 4~5 µm spectral region, the grating achieves over 98% diffraction efficiency in a broad MWIR range. To switch the grating, both active and passive driving methods can be considered. In our experiment, we used a polymer-stabilized twisted nematic cell as the polarization rotator for passive driving. The obtained rise time is 0.2 ms and decay time is 10 ms.

6.
Opt Express ; 25(7): 7984-7997, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28380914

ABSTRACT

We report a vertically-aligned liquid crystal display (LCD) device with submillisecond response time, high transmittance, and low operation voltage. The top substrate has a common electrode, while the bottom substrate consists of hole-patterned fringing-field-switching (FFS) pixel electrodes. A negative dielectric anisotropy LC is employed. In the voltage-on state, the LC directors are reoriented by the fringing fields surrounding the hole area and by the longitudinal and fringe fields outside the hole area. After design optimization, we are able to achieve 85% peak transmittance under crossed circular polarizers. During the relaxation process, the standing walls exert a strong restoring force, leading to submillisecond gray-to-gray response time. Moreover, this device enables high resolution density because only one thin-film transistor per pixel is needed and the bottom FFS electrode has built-in capacitor. This device is particularly attractive for the emerging virtual reality displays.

7.
Opt Express ; 24(13): 14793-800, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410631

ABSTRACT

We demonstrate a polymer network liquid crystal (PNLC) with negligible hysteresis while keeping submillisecond response time. By doping about 1% dodecyl acrylate (C12A) into the liquid crystal/monomer precursor, both hysteresis and residual birefringence are almost completely eliminated. The operating voltage and scattering properties remain nearly intact, but the tradeoff is enhanced double relaxation. This hysteresis-free PNLC should find applications in spatial light modulators, laser beam control, and optical communications in infrared region.

SELECTION OF CITATIONS
SEARCH DETAIL
...