Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298640

ABSTRACT

Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism (I148M) is strongly associated with non-alcoholic steatohepatitis and advanced fibrosis; however, the underlying mechanisms remain largely unknown. In this study, we investigated the effect of PNPLA3-I148M on the activation of hepatic stellate cell line LX-2 and the progression of liver fibrosis. Immunofluorescence staining and enzyme-linked immunosorbent assay were used to detect lipid accumulation. The expression levels of fibrosis, cholesterol metabolism, and mitochondria-related markers were measured via real-time PCR or western blotting. Electron microscopy was applied to analyze the ultrastructure of the mitochondria. Mitochondrial respiration was measured by a Seahorse XFe96 analyzer. PNPLA3-I148M significantly promoted intracellular free cholesterol aggregation in LX-2 cells by decreasing cholesterol efflux protein (ABCG1) expression; it subsequently induced mitochondrial dysfunction characterized by attenuated ATP production and mitochondrial membrane potential, elevated ROS levels, caused mitochondrial structural damage, altered the oxygen consumption rate, and decreased the expression of mitochondrial-function-related proteins. Our results demonstrated for the first time that PNPLA3-I148M causes mitochondrial dysfunction of LX-2 cells through the accumulation of free cholesterol, thereby promoting the activation of LX-2 cells and the development of liver fibrosis.


Subject(s)
Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Humans , Genetic Predisposition to Disease , Lipid Metabolism , Liver Cirrhosis/genetics , Mitochondria/genetics , Polymorphism, Genetic
2.
J Immunol Res ; 2021: 4973589, 2021.
Article in English | MEDLINE | ID: mdl-34722779

ABSTRACT

METHOD: This study included 74 Chinese male patients with HCC. They were divided into early (n = 19), intermediate (n = 37), and terminal (n = 18) groups, referred to as Barcelona Clinic Liver Cancer stage 0+A, B, and C+D, respectively. Paired fecal and plasma samples were collected. Microbial composition and profiles were analyzed by 16S rRNA gene sequencing. The levels of gut damage marker (regenerating islet-derived protein 3α (REG3α)) and microbial translocation markers (soluble CD14 (sCD14), lipopolysaccharide-binding protein (LBP), peptidoglycan recognition proteins (PGRPs)) were determined in plasma samples of patients by ELISA. Twenty plasma cytokine and chemokines were determined by Luminex. RESULTS: In early, intermediate, and terminal groups, the abundance of the Bifidobacteriaceae family decreased significantly (3.52%, 1.55%, and 0.56%, respectively, P = 0.003), while the abundance of the Enterococcaceae family increased significantly (1.6%, 2.9%, and 13.4%, respectively, P = 0.022). Levels of REG3α and sCD14 were markedly elevated only in the terminal group compared with the early (P = 0.025 and P = 0.048) and intermediate groups (P = 0.023 and P = 0.046). The level of LBP significantly increased in the intermediate (P = 0.035) and terminal (P = 0.025) groups compared with the early group. The PGRP levels were elevated only in the terminal group compared with the early group (P = 0.018). The ratio of Enterococcaceae to Bifidobacteriaceae was significantly associated with the levels of REG3α, LBP, sCD14, and PGRPs. With HCC progression, increased levels of inflammatory cytokines accompanied by a T cell-immunosuppressive response and microbial translocation were observed. CONCLUSION: Gut microbiota compositional and functional shift, together with elevated gut damage and microbial translocation, may promote HCC development by stimulating inflammatory response and suppressing T cell response.


Subject(s)
Bacterial Translocation/immunology , Carcinoma, Hepatocellular/immunology , Dysbiosis/complications , Gastrointestinal Microbiome/immunology , Liver Neoplasms/immunology , Actinobacteria/genetics , Actinobacteria/immunology , Actinobacteria/isolation & purification , Aged , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/microbiology , Carcinoma, Hepatocellular/pathology , DNA, Bacterial/isolation & purification , Disease Progression , Dysbiosis/diagnosis , Dysbiosis/immunology , Dysbiosis/microbiology , Enterococcaceae/genetics , Enterococcaceae/immunology , Enterococcaceae/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/microbiology , Liver Neoplasms/pathology , Male , Middle Aged , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...