Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 317: 120790, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36460190

ABSTRACT

This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.


Subject(s)
Nitrogen-Fixing Bacteria , Soil , Nitrification , Agriculture , Charcoal/pharmacology , Soil Microbiology , Nitrogen
2.
Environ Res ; 214(Pt 4): 113934, 2022 11.
Article in English | MEDLINE | ID: mdl-36027962

ABSTRACT

The overuse of N fertilizers has caused serious environmental problems (e.g., soil acidification, excessive N2O in the air, and groundwater contamination) and poses a serious threat to human health. Improving N fertilizer utilization efficiency and plant uptake is an alternative for N fertilizers overuses. Enterobacter cloacae is an opportunistic pathogen, also used as plant growth-promoting rhizobacteria (PGPR), has been widely presented in the fields of bioremediation and bioprotection. Here we developed a new N fixation-release model by combining biochar with E. cloacae. The efficiency of the model was evaluated using a greenhouse pot experiment with maize (Zea mays L.) as the test crop. The results showed that biochar combined with E. cloacae significantly increased the N content. The application of biochar combined with E. cloacae increased total N in soil by 33% compared with that of N fertilizers application. The N-uptake and utilization efficiency (NUE) in plant was increased 17.03% and 14.18%, respectively. The activities of urease, dehydrogenase and fluorescein diacetate hydrolase (FDA) was improved, the catalase (CAT) activity decreased. Analysis of the microbial community diversity revealed the abundance of Proteobacteria, Actinobacteria, Firmicutes, and Gemmatimonadetes were significantly improved. The mechanism under the model is that E. cloacae acted as N-fixation by capturing N2 from air. Biochar served as carrier, supporting better living environment for E. cloacae, also as adsorbent adsorbing N from fertilizer and from fixed N by E. cloacae, the adsorption in turn slower the N release. Altogether, the model promotes N utilization by plants, improves the soil environment, and reduces N pollution.


Subject(s)
Fertilizers , Nitrogen , Agriculture/methods , Bacteria , Environmental Pollution , Fertilizers/analysis , Humans , Nitrogen/analysis , Soil , Zea mays
3.
Bioprocess Biosyst Eng ; 45(9): 1581-1593, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35932338

ABSTRACT

Chlorophenols are widely used in industry and are known environmental pollutants. The degradation of chlorophenols is important for environmental remediation. In this study, we evaluated the biodegradation of 2-chlorophenol using crude laccase produced by Myrothecium verrucaria. Atmospheric and room temperature plasma technology was used to increase laccase production. The culture conditions of the M-6 mutant were optimized. Our results showed that corn stover could replace glucose as a carbon source and promote laccase production. The maximum laccase activity of 30.08 U/mL was achieved after optimization, which was a 19.04-fold increase. The biodegradation rate of 2-chlorophenol using crude laccase was 97.13%, a positive correlation was determined between laccase activity and degradation rate. The toxicity of 2-CP was substantially reduced after degradation by laccase solution. Our findings show the feasibility of the use of corn stover in laccase production by M. verrucaria mutant and the subsequent biodegradation of 2-chlorophenol using crude laccase.


Subject(s)
Chlorophenols , Laccase , Biodegradation, Environmental , Carbon , Chlorophenols/metabolism , Hypocreales , Zea mays
4.
Environ Pollut ; 310: 119726, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35810983

ABSTRACT

It is estimated that over 700,000 tons of synthetic dyes are produced annually, 15% of which are emitted as effluents. These highly stable dyes enter the world water ecosystems and stay in the environment, and eventually cause adverse impacts to the environment. Current wastewater treatment methods, such as filtration, coagulation, and chemical oxidation, have sideeffects, including toxic residue formation, membrane fouling, bioaccumulation, and secondary pollutant formation. Given the issues mentioned, it is necessary to study how to improve the degradation of synthetic dye with a cost-effective and ecofriendly approach. Natural oxidation provides a greener option. Recently, Deuteromycetes fungus Myrothecium verrucaria G-1 (M. verrucaria G-1) has shown great potential in producing high level of dye oxidase. This study aims to generate a dye oxidase hyperproducer, 3H6 from M. verrucaria G-1 by using atmospheric and room temperature plasma (ARTP) coupled with ultraviolet (UV) irradiation. This method increases oxidase production by nearly 106.15%. After a simple precipitation and dialysis, this mutant oxidase increases by 1.97-fold in a specific activity with dye degradation rates at 70% for Mmethylene blue (MB) and 85% for Congo red (CR). It is found that the genetic stability of 3H6 remains active for ten generations. The size of oxidase is 65 kDa, and optimum temperature for reaction is 30 °C with 4.5 pH. This study presents that the first combined mutagenesis approach by ARPT-UV on fungus species generates an impressive increment of acid dye oxidases production. As such, this method presents a cost-effective alternative to mitigate hazardous dye pollution.


Subject(s)
Hypocreales , Mitosporic Fungi , Water Pollutants, Chemical , Coloring Agents , Ecosystem , Mutagenesis , Oxidoreductases
5.
Environ Res ; 188: 109829, 2020 09.
Article in English | MEDLINE | ID: mdl-32798948

ABSTRACT

Intensive studies have been performed on the improvement of bioethanol production by transformation of lignocellulose biomass. In this study, the digestibility of corn stover was dramatically improved by using laccase immobilized on Cu2+ modified recyclable magnetite nanoparticles, Fe3O4-NH2. After digestion, the laccase was efficiently separated from slurry. The degradation rate of lignin reached 40.76%, and the subsequent cellulose conversion rate 38.37% for 72 h at 35 °C with cellulase at 50 U g-1 of corn stover. Compared to those of free and inactivated mode, the immobilized laccase pre-treatment increased subsequent cellulose conversion rates by 23.98% and 23.34%, respectively. Moreover, the reusability of immobilized laccase activity remained 50% after 6 cycles. The storage and thermal stability of the fixed laccase enhanced by 70% and 24.1% compared to those of free laccase at 65 °C, pH 4.5, respectively. At pH 10.5, it exhibited 16.3% more activities than its free mode at 35 °C. Our study provides a new avenue for improving the production of bioethanol with immobilized laccase for delignification using corn stover as the starting material.


Subject(s)
Cellulase , Magnetite Nanoparticles , Hydrolysis , Laccase , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...