Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3073, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35654798

ABSTRACT

Quantum phase transitions in quantum matter occur at zero temperature between distinct ground states by tuning a nonthermal control parameter. Often, they can be accurately described within the Landau theory of phase transitions, similarly to conventional thermal phase transitions. However, this picture can break down under certain circumstances. Here, we present a comprehensive study of the effect of hydrostatic pressure on the magnetic structure and spin dynamics of the spin-1/2 ladder compound C9H18N2CuBr4. Single-crystal heat capacity and neutron diffraction measurements reveal that the Néel-ordered phase breaks down beyond a critical pressure of Pc ∼ 1.0 GPa through a continuous quantum phase transition. Estimates of the critical exponents suggest that this transition may fall outside the traditional Landau paradigm. The inelastic neutron scattering spectra at 1.3 GPa are characterized by two well-separated gapped modes, including one continuum-like and another resolution-limited excitation in distinct scattering channels, which further indicates an exotic quantum-disordered phase above Pc.

2.
Phys Rev Lett ; 127(21): 217203, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34860097

ABSTRACT

A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling, and Hund's coupling energy in 2D van der Waals (vdW) material produces a novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe_{3} provides a promising platform to simultaneously manipulate the magnetic and electrical properties for potential device implementation using few nanometers thick materials. Here, we show a continuous tuning of magnetic and electrical properties of a CrGeTe_{3} single crystal using pressure. With application of pressure, CrGeTe_{3} transforms from a ferromagnetic insulator with Curie temperature T_{C}∼66 K at ambient condition to a correlated 2D Fermi metal with T_{C} exceeding ∼250 K. Notably, absence of an accompanying structural distortion across the insulator-metal transition (IMT) suggests that the pressure induced modification of electronic ground states is driven by electronic correlation furnishing a rare example of bandwidth-controlled IMT in a vdW material.

4.
Nat Commun ; 12(1): 1129, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602936

ABSTRACT

Ice exhibits extraordinary structural variety in its polymorphic structures. The existence of a new form of diversity in ice polymorphism has recently been debated in both experimental and theoretical studies, questioning whether hydrogen-disordered ice can transform into multiple hydrogen-ordered phases, contrary to the known one-to-one correspondence between disordered ice and its ordered phase. Here, we report a high-pressure phase, ice XIX, which is a second hydrogen-partially-ordered phase of ice VI. We demonstrate that disordered ice undergoes different manners of hydrogen ordering, which are thermodynamically controlled by pressure in the case of ice VI. Such multiplicity can appear in all disordered ice, and it widely provides a research approach to deepen our knowledge, for example of the crucial issues of ice: the centrosymmetry of hydrogen-ordered configurations and potentially induced (anti-)ferroelectricity. Ultimately, this research opens up the possibility of completing the phase diagram of ice.

5.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 4): 510-513, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32280494

ABSTRACT

The crystal structures of praseodymium silicide (5/4), Pr5Si4, and neodymium silicide (5/4), Nd5Si4, were redetermined using high-quality single-crystal X-ray diffraction data. The previous structure reports of Pr5Si4 were only based on powder X-ray diffraction data [Smith et al. (1967 ▸). Acta Cryst. 22 940-943; Yang et al. (2002b ▸). J. Alloys Compd. 339, 189-194; Yang et al., (2003 ▸). J. Alloys Compd. 263, 146-153]. On the other hand, the structure of Nd5Si4 has been determined from powder data [neutron; Cadogan et al., (2002 ▸). J. Phys. Condens. Matter, 14, 7191-7200] and X-ray [Smith et al. (1967 ▸). Acta Cryst. 22 940-943; Yang et al. (2002b ▸). J. Alloys Compd. 339, 189-194; Yang et al., (2003 ▸). J. Alloys Compd. 263, 146-153] and single-crystal data with isotropic atomic displacement parameters [Roger et al., (2006 ▸). J. Alloys Compd. 415, 73-84]. In addition, the anisotropic atomic displacement parameters for all atomic sites have been determined for the first time. These compounds are confirmed to have the tetra-gonal Zr5Si4-type structure (space group: P41212), as reported previously (Smith et al., 1967 ▸). The structure is built up by distorted body-centered cubes consisting of Pr(Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels in which the silicon dimers are situated.

6.
Sci Rep ; 9(1): 347, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30674929

ABSTRACT

Superconducting properties of Cr0.0005NbSe2 (Tc~6.64 K) single crystals have been investigated through the temperature dependent resistivity (~8 GPa) and DC magnetization (~1 GPa) measurements. Further, the critical current density (Jc) as a function of applied magnetic field has been studied from magnetic isotherms. The vortex pinning mechanisms have also been systematically analyzed using weak collective pinning theory as a function of pressure. The Jc corresponds to the flux flow enhanced by the application of pressure due to increase of Tc and vortex changes. We found that the pressure is responsible for the spatial variations in the charge carrier mean free path (δl pinning). We find that core point pinning is more dominant than surface pinning which is caused by the application of pressure. In addition, Jc(H = 0) increases from 3.9 × 105 (0 GPa) to 1.3 × 106 (1.02 GPa) A/cm2 at 2 K as the pressure is increased from normal pressure to 1.02 GPa. The pressure dependence of Tc (dTc/dP) becomes 0.91 K/GPa and 0.75 K/GPa from magnetization and resistivity measurements respectively. We found that the pressure promotes the anisotropy nature, and decrease of coherence length and resulting in pathetic interface of the vortex core with pinning centers.

7.
RSC Adv ; 9(32): 18353-18358, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-35515234

ABSTRACT

Purely organic crystals, κ-X3(Cat-EDT-TTF)2 [X = H or D, Cat-EDT-TTF = catechol-fused tetrathiafulvalene], are a new type of molecular conductor with hydrogen dynamics. In this work, hydrostatic pressure effects on these materials were investigated in terms of the electrical resistivity and crystal structure. The results indicate that the pressure induces and promotes hydrogen (deuterium) localization in the hydrogen bond, in contrast to the case of the conventional hydrogen-bonded materials (where pressure prevents hydrogen localization), and consequently leads to a significant change in the electrical conducting properties (i.e., the occurrence of a semiconductor-insulator transition). Therefore, we have successfully found a new type of pressure-induced phase transition where the cooperation of the hydrogen dynamics and π-electron interactions plays a crucial role.

SELECTION OF CITATIONS
SEARCH DETAIL
...