Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Mech Methods ; 33(4): 293-306, 2023 May.
Article in English | MEDLINE | ID: mdl-36154553

ABSTRACT

Nuclear receptors (NRs) are ligand-modulated transcription factors that regulate multiple physiological functions in our body. Many NRs in their unliganded state are localized in the cytoplasm. The ligand-inducible nuclear translocation of NRs provides a valuable tool for studying the NR-ligand interactions and their downstream effects. The translocation response of NRs can be studied irrespective of the nature of the interacting ligand (agonist, antagonist, or a small molecule modulator). These nuclear translocation studies offer an advantage over promoter-reporter-based transcription assays where transcription response is observed only with the activating hormones or agonistic ligands. Globally, milk serves as a major dietary source. However, suspected presence of endocrine/metabolism-disrupting chemicals like bisphenols, parabens, organochlorine pesticides, carbamates, non-steroidal anti-inflammatory drugs, chloramphenicol, brominated flame retardants, etc. has been reported. Considering that these chemicals may impart serious developmental and metabolism-related health concerns, it is essential to develop assays suitable for the detection of xenobiotics present at differing levels in milk. Since milk samples cannot be used directly on cultured cells or for microscopy, a combination of screening strategies has been developed herein based on the revelation that i) lipophilic NR ligands can be successfully retrieved in milk-fat; ii) milk-fat treatment of cells is compatible with live-cell imaging studies; and finally, iii) treatment of cells with xenobiotics-spiked and normal milk derived fat provides a visual and quantifiable response of NR translocation in living cells. Utilizing a milk-fat extraction method and Green Fluorescent Protein (GFP) tagged NRs expressed in cultured mammalian cells, followed by an assessment of NR response proved to be an effective approach for screening xenobiotics present in milk samples.HighlightsDiverse endocrine and metabolism-disrupting chemicals are suspected to contaminate milk.Nuclear receptors serve as 'xenosensors' for assessing the presence of xenobiotics in milk.Nuclear import of steroid receptors with (ant)agonist can be examined in live cells.Lipophilic xenobiotics are extracted and observed enriched in milk-fat fraction.A comprehensive cell-based protocol aids in the detection of xenobiotics in milk.


Subject(s)
Endocrine Disruptors , Receptors, Steroid , Animals , Milk/chemistry , Milk/metabolism , Xenobiotics/toxicity , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, Steroid/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Mammals/metabolism
2.
J Agric Food Chem ; 67(28): 8007-8019, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31268702

ABSTRACT

Cow and human milk have been reported to contain dioxins ranging from 0.023 to 26.46 and 0.88 to 19 pg/g of fat, respectively. However, the toxic effects of the dioxins in the milk in this range of concentrations were not explored. Therefore, considering the outbred livestock tissues as better models than inbred laboratory animals, the present study targeted to study the effect of dioxins present in the milk on three-dimensionally (3D) cultured buffalo primary hepatocyte spheroids. The spheroids were treated with a model dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), directly and also through milk fat at different concentrations (i.e, 0.02-20 pg/mL) for 24 h. Among the liver-cell-specific (ALB, HNF4α, and AFP) genes, a similar ALB and upregulated HNF4α expression at all treatments indicated the functional and transcriptionally active hepatocyte spheroids. Supportingly, no significant difference in the antiapoptotic gene expression between the treatments of milk fat and milk fat containing dioxins indicated the survivability of the spheroids during dioxin treatments. Among the selected TCDD responsive (CYP1A1, CYP1A2, AHR, CYP1B1, and TIPARP) genes, a nonsignificant increasing trend of the CYP1A1 expression was observed from 0.2 to 10 pg/mL of TCDD concentration through milk fat. This pattern was similar to the reported insensitive response of human primary hepatocytes toward dioxins than that of rat primary hepatocytes. This may indicate that the buffalo hepatocyte spheroids could be better models than rats for TCDD hepatotoxic studies. Further, TCDD in the milk in the range of 0.02-20 pg/mL concentration may not be very hepatotoxic.


Subject(s)
Dioxins/pharmacology , Hepatocytes/drug effects , Milk/chemistry , Animals , Buffaloes , Cells, Cultured , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Dioxins/analysis , Food Contamination/analysis , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Liver/cytology , Liver/drug effects , Liver/metabolism , Models, Animal , Rats , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...