Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom ; 59(5): e5023, 2024 May.
Article in English | MEDLINE | ID: mdl-38624283

ABSTRACT

Microsampling has revolutionized pharmaceutical drug development and clinical research by reducing sample volume requirements, allowing sample collection at home or nontraditional sites, minimizing animal and patient burden, and enabling more flexible study designs. This perspective paper discusses the transformative impact of microsampling and patient-centric sampling (PCS) techniques, emphasizing their advantages in drug development and clinical trials. We highlight the integration of liquid chromatography-mass spectrometry (LC-MS) strategies for analyzing PCS samples, focusing on our research experience and a review of current literatures. The paper reviews commercially available PCS devices, their regulatory status, and their application in clinical trials, underscoring the benefits of PCS in expanding patient enrollment diversity and improving study designs. We also address the operational challenges of implementing PCS, including the need for bridging studies to ensure data comparability between traditional and microsampling methods, and the analytical challenges posed by PCS samples. The paper proposes future directions for PCS, including the development of global regulatory standards, technological advancements to enhance user experience, the increased concern of sustainability and patient data privacy, and the integration of PCS with other technologies for improved performance in drug development and clinical studies. By advancing microsampling and PCS techniques, we aim to foster patient-centric approaches in pharmaceutical sciences, ultimately enhancing patient care and treatment efficacy.


Subject(s)
Drug Development , Liquid Chromatography-Mass Spectrometry , Animals , Humans , Research Design , Patient-Centered Care , Pharmaceutical Preparations
2.
J Am Soc Mass Spectrom ; 34(9): 1970-1978, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37540625

ABSTRACT

Increased access to cheap and rapid mass spectrometry testing of biofluids is desirable for the analysis of disorders and diseases that may be linked to alterations in metabolite or lipid levels. The objective of this study is to establish an easily customized high-throughput workflow for the analysis of biological samples using desorption electrospray ionization-mass spectrometry (DESI-MS). The guiding principles of this workflow are the use of low-cost, open-source, and readily accessible materials with high-throughput and reproducibility. The design consists of 3 steps: (1) PARAFILM surface customization of size, shape, and depth of features on PARAFILM via 3D printed molds; (2) sample spotting via high-throughput robotics using the relatively inexpensive and open-source Opentrons platform to reduce variability and increase reliability of sample spotting; and (3) an open-source point-and-click graphical user interface (MSI.EAGLE) for data analysis via the R statistical language building on the Cardinal package. Here we describe this workflow and test optimal surface ionization characteristics by comparison of serum extracts spotted on PARAFILM and on PTFE (porous and nonporous). Untargeted analysis across three surfaces suggests that they are all suitable for ionization of a wide range of metabolites and lipids, with 3983 m/z features detected. Differential analysis of polar vs nonpolar serum extracts suggests that ∼80% of ions are desorbed preferentially from different surfaces. PARAFILM is less impacted by the interference of background ions derived from the surface. The developed system allows for a wide range of researchers to access custom surface design workflows and high-throughput analyses in a highly cost-effective manner.


Subject(s)
Lipidomics , Paraffin , Reproducibility of Results , Lipidomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...