Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826457

ABSTRACT

Protein phosphatase, Mg 2+ /Mn 2+ dependent 1D (PPM1D), is a serine/threonine phosphatase that is recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses the activation of p53. Consistent with its oncogenic properties, genetic loss or pharmacologic inhibition of PPM1D impairs tumor growth and sensitizes cancer cells to cytotoxic therapies in a wide range of preclinical models. Given the therapeutic potential of targeting PPM1D specifically and the DDR and p53 pathway more generally, we sought to deepen our biological understanding of PPM1D as a drug target and determine how PPM1D inhibition differs from other therapeutic approaches to activate the DDR. We performed a high throughput screen to identify new allosteric inhibitors of PPM1D, then generated and optimized a suite of enzymatic, cell-based, and in vivo pharmacokinetic and pharmacodynamic assays to drive medicinal chemistry efforts and to further interrogate the biology of PPM1D. Importantly, this drug discovery platform can be readily adapted to broadly study the DDR and p53. We identified compounds distinct from previously reported allosteric inhibitors and showed in vivo on-target activity. Our data suggest that the biological effects of inhibiting PPM1D are distinct from inhibitors of the MDM2-p53 interaction and standard cytotoxic chemotherapies. These differences also highlight the potential therapeutic contexts in which targeting PPM1D would be most valuable. Therefore, our studies have identified a series of new PPM1D inhibitors, generated a suite of in vitro and in vivo assays that can be broadly used to interrogate the DDR, and provided important new insights into PPM1D as a drug target.

2.
Cell Chem Biol ; 30(5): 470-485.e6, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36963402

ABSTRACT

The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic ß2 and ß5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the ß5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Plasmodium , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Proteasome Endopeptidase Complex/metabolism , Plasmodium/metabolism , Artemisinins/chemistry , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry
3.
Front Mol Biosci ; 10: 1163536, 2023.
Article in English | MEDLINE | ID: mdl-36994428

ABSTRACT

High-throughput screening (HTS) methods enable the empirical evaluation of a large scale of compounds and can be augmented by virtual screening (VS) techniques to save time and money by using potential active compounds for experimental testing. Structure-based and ligand-based virtual screening approaches have been extensively studied and applied in drug discovery practice with proven outcomes in advancing candidate molecules. However, the experimental data required for VS are expensive, and hit identification in an effective and efficient manner is particularly challenging during early-stage drug discovery for novel protein targets. Herein, we present our TArget-driven Machine learning-Enabled VS (TAME-VS) platform, which leverages existing chemical databases of bioactive molecules to modularly facilitate hit finding. Our methodology enables bespoke hit identification campaigns through a user-defined protein target. The input target ID is used to perform a homology-based target expansion, followed by compound retrieval from a large compilation of molecules with experimentally validated activity. Compounds are subsequently vectorized and adopted for machine learning (ML) model training. These machine learning models are deployed to perform model-based inferential virtual screening, and compounds are nominated based on predicted activity. Our platform was retrospectively validated across ten diverse protein targets and demonstrated clear predictive power. The implemented methodology provides a flexible and efficient approach that is accessible to a wide range of users. The TAME-VS platform is publicly available at https://github.com/bymgood/Target-driven-ML-enabled-VS to facilitate early-stage hit identification.

4.
Bioorg Med Chem Lett ; 80: 129084, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36423823

ABSTRACT

In the treatment of non-small cell lung cancer (NSCLC), patients harboring exon 20 insertion mutations in the epidermal growth factor receptor (EGFR) gene (EGFR) have few effective therapies because this subset of mutants is generally resistant to most currently approved EGFR inhibitors. This report describes the structure-guided design of a novel series of potent, irreversible inhibitors of EGFR exon 20 insertion mutations, including the V769_D770insASV and D770_N771insSVD mutants. Extensive structure-activity relationship (SAR) studies led to the discovery of mobocertinib (compound 21c), which inhibited growth of Ba/F3 cells expressing the ASV insertion with a half-maximal inhibitory concentration of 11 nM and with selectivity over wild-type EGFR. Daily oral administration of mobocertinib induced tumor regression in a Ba/F3 ASV xenograft mouse model at well-tolerated doses. Mobocertinib was approved in September 2021 for the treatment of adult patients with advanced NSCLC with EGFR exon 20 insertion mutations with progression on or after platinum-based chemotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutagenesis, Insertional , Mutation , ErbB Receptors , Exons , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
5.
Antimicrob Agents Chemother ; 66(10): e0081722, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36094216

ABSTRACT

The proteasome is a promising target for antimalarial chemotherapy. We assessed ex vivo susceptibilities of fresh Plasmodium falciparum isolates from eastern Uganda to seven proteasome inhibitors: two asparagine ethylenediamines, two macrocyclic peptides, and three peptide boronates; five had median IC50 values <100 nM. TDI8304, a macrocylic peptide lead compound with drug-like properties, had a median IC50 of 16 nM. Sequencing genes encoding the ß2 and ß5 catalytic proteasome subunits, the predicted targets of the inhibitors, and five additional proteasome subunits, identified two mutations in ß2 (I204T, S214F), three mutations in ß5 (V2I, A142S, D150E), and three mutations in other subunits. The ß2 S214F mutation was associated with decreased susceptibility to two peptide boronates, with IC50s of 181 nM and 2635 nM against mutant versus 62 nM and 477 nM against wild type parasites for MMV1579506 and MMV1794229, respectively, although significance could not be formally assessed due to the small number of mutant parasites with available data. The other ß2 and ß5 mutations and mutations in other subunits were not associated with susceptibility to tested compounds. Against culture-adapted Ugandan isolates, two asparagine ethylenediamines and the peptide proteasome inhibitors WLW-vinyl sulfone and WLL-vinyl sulfone (which were not studied ex vivo) demonstrated low nM activity, without decreased activity against ß2 S214F mutant parasites. Overall, proteasome inhibitors had potent activity against P. falciparum isolates circulating in Uganda, and genetic variation in proteasome targets was uncommon.


Subject(s)
Antimalarials , Plasmodium falciparum , Proteasome Inhibitors , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Asparagine , Drug Resistance/genetics , Ethylenediamines/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Peptides/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Uganda
6.
Science ; 376(6597): 1074-1079, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35653481

ABSTRACT

Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5'-monophosphate-mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid-sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5'-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite Plasmodium falciparum, namely tyrosine RS (PfYRS). ML901 exerts whole-life-cycle-killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901.


Subject(s)
Antimalarials , Malaria, Falciparum , Molecular Targeted Therapy , Plasmodium falciparum , Protein Biosynthesis , Protozoan Proteins , Tyrosine-tRNA Ligase , Adenosine/analogs & derivatives , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/therapeutic use , Crystallography, X-Ray , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protein Biosynthesis/drug effects , Protein Conformation , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sulfonic Acids/chemistry , Tyrosine-tRNA Ligase/chemistry , Tyrosine-tRNA Ligase/metabolism
7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34548400

ABSTRACT

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Subject(s)
Boron Compounds/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/pharmacology , Administration, Oral , Animals , Boron Compounds/administration & dosage , Boron Compounds/chemistry , Catalytic Domain , Humans , Malaria, Falciparum/enzymology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Plasmodium falciparum/enzymology , Proteasome Inhibitors/administration & dosage , Proteasome Inhibitors/chemistry
8.
Cancer Discov ; 11(7): 1672-1687, 2021 07.
Article in English | MEDLINE | ID: mdl-33632773

ABSTRACT

Most EGFR exon 20 insertion (EGFRex20ins) driver mutations in non-small cell lung cancer (NSCLC) are insensitive to approved EGFR tyrosine kinase inhibitors (TKI). To address the limitations of existing therapies targeting EGFR-mutated NSCLC, mobocertinib (TAK-788), a novel irreversible EGFR TKI, was specifically designed to potently inhibit oncogenic variants containing activating EGFRex20ins mutations with selectivity over wild-type EGFR. The in vitro and in vivo activity of mobocertinib was evaluated in engineered and patient-derived models harboring diverse EGFRex20ins mutations. Mobocertinib inhibited viability of various EGFRex20ins-driven cell lines more potently than approved EGFR TKIs and demonstrated in vivo antitumor efficacy in patient-derived xenografts and murine orthotopic models. These findings support the ongoing clinical development of mobocertinib for the treatment of EGFRex20ins-mutated NSCLC. SIGNIFICANCE: No oral EGFR-targeted therapies are approved for EGFR exon 20 insertion (EGFRex20ins) mutation-driven NSCLC. Mobocertinib is a novel small-molecule EGFR inhibitor specifically designed to target EGFRex20ins mutants. Preclinical data reported here support the clinical development of mobocertinib in patients with NSCLC with EGFR exon 20 insertion mutations.See related commentary by Pacheco, p. 1617.This article is highlighted in the In This Issue feature, p. 1601.


Subject(s)
Aniline Compounds/therapeutic use , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Exons , Indoles/therapeutic use , Lung Neoplasms/drug therapy , Pyrimidines/therapeutic use , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor/drug effects , ErbB Receptors , Humans , Indoles/pharmacology , Lung Neoplasms/genetics , Mice , Mutagenesis, Insertional , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
9.
Bioorg Med Chem ; 28(19): 115681, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32912429

ABSTRACT

Autophagy is postulated to be required by cancer cells to survive periods of metabolic and/or hypoxic stress. ATG7 is the E1 enzyme that is required for activation of Ubl conjugation pathways involved in autophagosome formation. This article describes the design and optimization of pyrazolopyrimidine sulfamate compounds as potent and selective inhibitors of ATG7. Cellular levels of the autophagy markers, LC3B and NBR1, are regulated following treatment with these compounds.


Subject(s)
Autophagy-Related Protein 7/antagonists & inhibitors , Drug Discovery , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Sulfonic Acids/pharmacology , Autophagy/drug effects , Autophagy-Related Protein 7/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry
10.
J Med Chem ; 61(22): 10053-10066, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30373366

ABSTRACT

The Plasmodium proteasome represents a potential antimalarial drug target for compounds with activity against multiple life cycle stages. We screened a library of human proteasome inhibitors (peptidyl boronic acids) and compared activities against purified P. falciparum and human 20S proteasomes. We chose four hits that potently inhibit parasite growth and show a range of selectivities for inhibition of the growth of P. falciparum compared with human cell lines. P. falciparum was selected for resistance in vitro to the clinically used proteasome inhibitor, bortezomib, and whole genome sequencing was applied to identify mutations in the proteasome ß5 subunit. Active site profiling revealed inhibitor features that enable retention of potent activity against the bortezomib-resistant line. Substrate profiling reveals P. falciparum 20S proteasome active site preferences that will inform attempts to design more selective inhibitors. This work provides a starting point for the identification of antimalarial drug leads that selectively target the P. falciparum proteasome.


Subject(s)
Boronic Acids/chemistry , Boronic Acids/pharmacology , Drug Design , Plasmodium falciparum/enzymology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Amino Acid Sequence , Animals , Catalytic Domain , Cell Line , Drug Evaluation, Preclinical , Drug Resistance/drug effects , Humans , Models, Molecular , Proteasome Endopeptidase Complex/chemistry
11.
Bioorg Med Chem Lett ; 26(4): 1156-60, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26804230

ABSTRACT

Investigations of a biaryl ether scaffold identified tetrahydronaphthalene Raf inhibitors with good in vivo activity; however these compounds had affinity toward the hERG potassium channel. Herein we describe our work to eliminate this hERG activity via alteration of the substituents on the benzoic amide functionality. The resulting compounds have improved selectivity against the hERG channel, good pharmacokinetic properties and potently inhibit the Raf pathway in vivo.


Subject(s)
Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Tetrahydronaphthalenes/chemistry , Animals , Cell Line, Tumor , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Inhibitory Concentration 50 , Male , Mice , Mutagenesis , Neoplasms/drug therapy , Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tetrahydronaphthalenes/pharmacokinetics , Tetrahydronaphthalenes/therapeutic use , Transplantation, Heterologous
12.
J Biol Chem ; 289(33): 22648-22658, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24966333

ABSTRACT

E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role in the endoplasmic reticulum (ER) stress response. However, the mechanisms of Ufm1 activation by Uba5 and subsequent transfer to the conjugating enzyme (E2), Ufc1, have not been studied in detail. In this work, we found that Uba5 activated Ufm1 via a two-step mechanism and formed a binary covalent complex of Uba5∼Ufm1 thioester. This feature contrasts with the three-step mechanism and ternary complex formation in ubiquitin-activating enzyme Uba1. Uba5 displayed random ordered binding with Ufm1 and ATP, and its ATP-pyrophosphate (PPi) exchange activity was inhibited by both AMP and PPi. Ufm1 activation and Uba5∼Ufm1 thioester formation were stimulated in the presence of Ufc1. Furthermore, binding of ATP to Uba5∼Ufm1 thioester was required for efficient transfer of Ufm1 from Uba5 to Ufc1 via transthiolation. Consistent with the two-step activation mechanism, the mechanism-based pan-E1 inhibitor, adenosine 5'-sulfamate (ADS), reacted with the Uba5∼Ufm1 thioester and formed a covalent, tight-binding Ufm1-ADS adduct in the active site of Uba5, which prevented further substrate binding or catalysis. ADS was also shown to inhibit the Uba5 conjugation pathway in the HCT116 cells through formation of the Ufm1-ADS adduct. This suggests that further development of more selective Uba5 inhibitors could be useful in interrogating the roles of the Uba5 pathway in cells.


Subject(s)
Multiprotein Complexes , Proteins , Ubiquitin-Activating Enzymes , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Catalytic Domain , Cell Line , Enzyme Activation , Humans , Models, Chemical , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , Protein Structure, Quaternary , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
13.
J Biol Chem ; 287(19): 15512-22, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22427669

ABSTRACT

Uba6 is a homolog of the ubiquitin-activating enzyme, Uba1, and activates two ubiquitin-like proteins (UBLs), ubiquitin and FAT10. In this study, biochemical and biophysical experiments were performed to understand the mechanisms of how Uba6 recognizes two distinct UBLs and catalyzes their activation and transfer. Uba6 is shown to undergo a three-step activation process and form a ternary complex with both UBLs, similar to what has been observed for Uba1. The catalytic mechanism of Uba6 is further supported by inhibition studies using a mechanism-based E1 inhibitor, Compound 1, which forms covalent adducts with both ubiquitin and FAT10. In addition, pre-steady state kinetic analysis revealed that the rates of UBL-adenylate (step 1) and thioester (step 2) formation are similar between ubiquitin and FAT10. However, distinct kinetic behaviors were also observed for ubiquitin and FAT10. FAT10 binds Uba6 with much higher affinity than ubiquitin while demonstrating lower catalytic activity in both ATP-PP(i) exchange and E1-E2 transthiolation assays. Also, Compound 1 is less potent with FAT10 as the UBL compared with ubiquitin in ATP-PP(i) exchange assays, and both a slow rate of covalent adduct formation and weak adduct binding to Uba6 contribute to the diminished potency observed for FAT10. Together with expression level analysis in IM-9 cells, this study sheds light on the potential role of cytokine-induced FAT10 expression in regulating Uba6 pathways.


Subject(s)
Adenosine Triphosphate/metabolism , Diphosphates/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitins/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Amino Acid Sequence , Animals , Blotting, Western , Cell Line , Enzyme Activation/drug effects , Humans , Interferon-gamma/pharmacology , Kinetics , Mass Spectrometry , Molecular Sequence Data , Molecular Structure , Protein Binding/drug effects , Spodoptera , Substrate Specificity , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Surface Plasmon Resonance , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/genetics , Ubiquitins/chemistry , Ubiquitins/genetics
14.
J Med Chem ; 54(6): 1836-46, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21341678

ABSTRACT

Inhibition of mutant B-Raf signaling, through either direct inhibition of the enzyme or inhibition of MEK, the direct substrate of Raf, has been demonstrated preclinically to inhibit tumor growth. Very recently, treatment of B-Raf mutant melanoma patients with a selective B-Raf inhibitor has resulted in promising preliminary evidence of antitumor activity. This article describes the design and optimization of tetrahydronaphthalene-derived compounds as potent inhibitors of the Raf pathway in vitro and in vivo. These compounds possess good pharmacokinetic properties in rodents and inhibit B-Raf mutant tumor growth in mouse xenograft models.


Subject(s)
Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Tetrahydronaphthalenes/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Crystallography, X-Ray , Drug Design , Melanoma, Experimental/drug therapy , Melanoma, Experimental/enzymology , Melanoma, Experimental/pathology , Mice , Mice, Nude , Models, Molecular , Mutation , Proto-Oncogene Proteins B-raf/genetics , Stereoisomerism , Structure-Activity Relationship , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology , Xenograft Model Antitumor Assays
15.
Bioorg Med Chem Lett ; 20(16): 4800-4, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20634068

ABSTRACT

The discovery of novel pyrazoline derivatives as B-Raf (V600E) inhibitors is described in this report. Chemical modification of the pyrazoline scaffold led to the development of SAR and identified potent and selective inhibitors of B-Raf (V600E). Determination of the pharmacokinetic properties of selected inhibitors is also reported.


Subject(s)
Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyrazoles/chemistry , Amino Acid Substitution , Binding Sites , Computer Simulation , Drug Evaluation, Preclinical , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship
17.
Eukaryot Cell ; 2(2): 256-64, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12684375

ABSTRACT

A genetic approach utilizing the yeast Saccharomyces cerevisiae was used to identify the target of antifungal compounds. This analysis led to the identification of small molecule inhibitors of RNA polymerase (Pol) III from Saccharomyces cerevisiae. Three lines of evidence show that UK-118005 inhibits cell growth by targeting RNA Pol III in yeast. First, a dominant mutation in the g domain of Rpo31p, the largest subunit of RNA Pol III, confers resistance to the compound. Second, UK-118005 rapidly inhibits tRNA synthesis in wild-type cells but not in UK-118005 resistant mutants. Third, in biochemical assays, UK-118005 inhibits tRNA gene transcription in vitro by the wild-type but not the mutant Pol III enzyme. By testing analogs of UK-118005 in a template-specific RNA Pol III transcription assay, an inhibitor with significantly higher potency, ML-60218, was identified. Further examination showed that both compounds are broad-spectrum inhibitors, displaying activity against RNA Pol III transcription systems derived from Candida albicans and human cells. The identification of these inhibitors demonstrates that RNA Pol III can be targeted by small synthetic molecules.


Subject(s)
Antifungal Agents/pharmacology , Enzyme Inhibitors/pharmacology , RNA Polymerase III/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Candida albicans/drug effects , Candida albicans/enzymology , Candida albicans/genetics , Cells, Cultured , Dose-Response Relationship, Drug , Drug Resistance, Fungal/genetics , Humans , Molecular Sequence Data , Molecular Weight , Mutation/genetics , Protein Subunits/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , RNA, Transfer/biosynthesis , RNA, Transfer/genetics , Reaction Time/drug effects , Reaction Time/genetics , Saccharomyces cerevisiae/genetics , Sequence Homology, Amino Acid , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
19.
J Am Chem Soc ; 124(7): 1307-15, 2002 Feb 20.
Article in English | MEDLINE | ID: mdl-11841300

ABSTRACT

The hydrolytic kinetic resolution (HKR) of terminal epoxides catalyzed by chiral (salen)Co(III) complex 1 x OAc affords both recovered unreacted epoxide and 1,2-diol product in highly enantioenriched form. As such, the HKR provides general access to useful, highly enantioenriched chiral building blocks that are otherwise difficult to access, from inexpensive racemic materials. The reaction has several appealing features from a practical standpoint, including the use of H(2)O as a reactant and low loadings (0.2-2.0 mol %) of a recyclable, commercially available catalyst. In addition, the HKR displays extraordinary scope, as a wide assortment of sterically and electronically varied epoxides can be resolved to > or = 99% ee. The corresponding 1,2-diols were produced in good-to-high enantiomeric excess using 0.45 equiv of H(2)O. Useful and general protocols are provided for the isolation of highly enantioenriched epoxides and diols, as well as for catalyst recovery and recycling. Selectivity factors (k(rel)) were determined for the HKR reactions by measuring the product ee at ca. 20% conversion. In nearly all cases, k(rel) values for the HKR exceed 50, and in several cases are well in excess of 200.


Subject(s)
Alcohols/chemical synthesis , Cobalt/chemistry , Epoxy Compounds/chemical synthesis , Ethylenediamines/chemistry , Catalysis , Chelating Agents/chemistry , Epoxy Compounds/chemistry , Hydrolysis , Kinetics , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...