Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
ACS Nanosci Au ; 3(3): 256-265, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37360846

ABSTRACT

Corticosteroids are widely used as an anti-inflammatory treatment for eye inflammation, but the current methods used in clinical practice for delivery are in the form of eye drops which is usually complicated for patients or ineffective. This results in an increase in the risk of detrimental side effects. In this study, we demonstrated proof-of-concept research for the development of a contact lens-based delivery system. The sandwich hydrogel contact lens consists of a polymer microchamber film made via soft lithography with an encapsulated corticosteroid, in this case, dexamethasone, located inside the contact lens. The developed delivery system showed sustained and controlled release of the drug. The central visual part of the lenses was cleared from the polylactic acid microchamber in order to maintain a clean central aperture similar to the cosmetic-colored hydrogel contact lenses.

2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372949

ABSTRACT

Maxillofacial surgery placement of fixatures (Leonard Buttons, LB) at close proximity to surgical incisions provides a potential reservoir as a secondary local factor to advanced periodontal disease, with bacterial formation around failed fixatures implicating plaque. To address infection rates, we aimed to surface coat LB and Titanium (Ti) discs using a novel form of chlorhexidine (CHX), CHX-CaCl2 and 0.2% CHX digluconate mouthwash as a comparison. CHX-CaCl2 coated, double-coated and mouthwash coated LB and Ti discs were transferred to 1 mL artificial saliva (AS) at specified time points, and UV-Visible spectroscopy (254 nm) was used to measure CHX release. The zone of inhibition (ZOI) was measured using collected aliquots against bacterial strains. Specimens were characterized using Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). SEM displayed copious dendritic crystals on LB/ Ti disc surfaces. Drug release from double-coated CHX-CaCl2 was 14 days (Ti discs) and 6 days (LB) above MIC, compared to the comparison group (20 min). The ZOI for the CHX-CaCl2 coated groups was significantly different within groups (p < 0.05). CHX-CaCl2 surface crystallization is a new drug technology for controlled and sustained CHX release; its antibacterial effectiveness makes this drug an ideal adjunct following clinical and surgical procedures to maintain oral hygiene and prevent surgical site infections.


Subject(s)
Anti-Infective Agents , Periodontal Diseases , Humans , Chlorhexidine/pharmacology , Chlorhexidine/chemistry , Mouthwashes/pharmacology , Calcium Chloride , Anti-Infective Agents/pharmacology , Bacteria , Titanium/pharmacology , Titanium/chemistry
3.
Front Immunol ; 13: 990794, 2022.
Article in English | MEDLINE | ID: mdl-36311757

ABSTRACT

The immune system protects from infections and cancer through complex cellular networks. For this purpose, immune cells require well-developed mechanisms of energy generation. However, the immune system itself can also cause diseases when defective regulation results in the emergence of autoreactive lymphocytes. Recent studies provide insights into how differential patterns of immune cell responses are associated with selective metabolic pathways. This review will examine the changing metabolic requirements of Th17 cells and of B cells at different stages of their development and activation. Both cells provide protection but can also mediate diseases through the production of autoantibodies and the production of proinflammatory mediators. In health, B cells produce antibodies and cytokines and present antigens to T cells to mount specific immunity. Th17 cells, on the other hand, provide protection against extra cellular pathogens at mucosal surfaces but can also drive chronic inflammation. The latter cells can also promote the differentiation of B cells to plasma cells to produce more autoantibodies. Metabolism-regulated checkpoints at different stages of their development ensure the that self-reactive B cells clones and needless production of interleukin (IL-)17 are limited. The metabolic regulation of the two cell types has some similarities, e.g. the utility of hypoxia induced factor (HIF)1α during low oxygen tension, to prevent autoimmunity and regulate inflammation. There are also clear differences, as Th17 cells only are vulnerable to the lack of certain amino acids. B cells, unlike Th17 cells, are also dependent of mechanistic target of rapamycin 2 (mTORC2) to function. Significant knowledge has recently been gained, particularly on Th17 cells, on how metabolism regulates these cells through influencing their epigenome. Metabolic dysregulation of Th17 cells and B cells can lead to chronic inflammation. Disease associated alterations in the genome can, in addition, cause dysregulation to metabolism and, thereby, result in epigenetic alterations in these cells. Recent studies highlight how pathology can result from the cooperation between the two cell types but only few have so far addressed the key metabolic alterations in such settings. Knowledge of the impact of metabolic dysfunction on chronic inflammation and pathology can reveal novel therapeutic targets to treat such diseases.


Subject(s)
Autoimmunity , Th17 Cells , Humans , B-Lymphocytes , Inflammation , Autoantibodies
4.
Biomater Adv ; 136: 212762, 2022 May.
Article in English | MEDLINE | ID: mdl-35929328

ABSTRACT

Engineering of colloidal particles and capsules despite substantial progress is still facing a number of unsolved issues including low loading capacity, non-uniform size and shape of carriers, tailoring different functionalities and versatility to encapsulated cargo. In this work, we propose a method for defined-shaped functionally asymmetric polymer capsule fabrication based on a soft lithography approach. The developed capsules consist of two classes of polymers - the main part "cup" is made out of polyelectrolyte multilayers (PAH-PSS) and "lid" is made of biodegradable polyether (PLGA). Asymmetric capsules combine advantages from both traditional layer-by-layer capsules and recently developed printed "pelmeni" capsules. This combination provides stimuli-responsiveness due to polyelectrolyte multilayer properties differing from PLGA. The inner volume of capsules can be loaded with a variety of active compounds and the capsule's geometry is defined due to the soft-lithography method. Capsules have a core-shell structure and monodisperse size distribution. Three methods to trigger cargo release have been demonstrated, namely temperature treatment, ultrasonication and pH shift. Steroidal drug dexamethasone was used to illustrate the applicability of the systems for triggered drug release. The application of proposed asymmetric capsules includes but is not limited to pharmacology, diagnostics, sensors, micro- and nanoreactors and chemical actuators.


Subject(s)
Polymers , Capsules/chemistry , Drug Liberation , Polyelectrolytes , Polymers/chemistry
5.
Vet Ophthalmol ; 25(1): 85-89, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34870369

ABSTRACT

OBJECTIVE: To establish the allele frequency of the PLL-causing G>A intron 10 ADAMTS17 mutation in the Portuguese Podengo population in the UK and investigate a possible correlation between the mutation and short stature. METHODS: Two groups of dogs (Group 1 and Group 2) were recruited for the purpose of the study. Group 1 (n = 40) consisted of dogs which were genotyped only and Group 2 (n = 42) consisted of dogs which were genotyped, underwent a full ophthalmological examination and also had their height measured at the withers. RESULTS: In Group 1, genotyping for the ADAMTS17:c.1473+1G>A mutation confirmed 1/40 homozygous for the mutated allele (-/-), 7/40 heterozygous for the mutated allele (+/-), and 32/40 homozygous for the wild-type allele (+/+) dogs. In Group 2, genotyping of the dogs confirmed 6/42 heterozygous for the mutated allele (+/-) and homozygous for the wild-type allele (+/+) dogs. In total, 1/82 (1.2%) dogs were confirmed to be homozygous for the mutated allele, 13/82 (15.8%) heterozygous for the mutated allele and 68/82 (83%) homozygous for the wild-type allele. The frequency of the mutated allele across both groups was calculated as 0.09. A statistically significant correlation between the mutation and short stature could not be established (p = .590). CONCLUSIONS: The frequency of the mutation calculated in this study (0.09) is high. Genetic testing should be considered for each dog prior to breeding with a view of selective breeding.


Subject(s)
Dog Diseases , Animals , Dog Diseases/genetics , Dogs , Gene Frequency , Introns , Mutation , Portugal
6.
Vet Ophthalmol ; 24(3): 265-278, 2021 May.
Article in English | MEDLINE | ID: mdl-33794048

ABSTRACT

OBJECTIVES: To identify bacterial microorganisms associated with canine keratomalacia, review their antimicrobial sensitivity, and evaluate clinical outcomes compared to results of microbial culture. METHODS: Retrospective analysis of clinical records of dogs diagnosed with a melting corneal ulcer presented to a referral hospital in Hertfordshire, UK between 2014 and 2018. RESULTS: One hundred and ten melting corneal ulcers were sampled in 106 dogs. The most common pure bacterial isolate was Pseudomonas aeruginosa (n = 26) followed by ß-hemolytic Streptococcus (n = 12). Melting corneal ulcers that cultured coagulase-positive Staphylococcus, coliform bacteria, Pasteurella multocida, Enterococcus, and Streptococcus viridans presented in smaller numbers and were analyzed together (n = 16). Multiple cultures were identified in nine cases (n = 9). Forty-seven cultures yielded no bacterial growth (n = 47). The susceptibility to fluoroquinolones remained high with the exception of ß-hemolytic Streptococci. There was no significant difference in the ulcer severity at presentation in regard to the cultured bacteria. Overall, 63 eyes (57%) received surgical grafting in addition to medical treatment. In 14 cases (13%), the progression of corneal melting despite medical ± surgical treatment resulted in enucleation. Fifty-seven percent (8/14) of the enucleated eyes cultured pure Pseudomonas aeruginosa isolates. In contrast, all ß-hemolytic Streptococcus-associated ulcers healed. CONCLUSIONS: The most common bacterial species associated with canine keratomalacia were Pseudomonas aeruginosa and ß-hemolytic Streptococcus. Because of the variation in antibacterial sensitivity between these two species, bacterial culture and sensitivity testing should be performed in all dogs presenting with keratomalacia. Melting corneal ulcers associated with pure Pseudomonas infection were significantly more likely to result in globe loss than melting corneal ulcers associated with other cultures.


Subject(s)
Dog Diseases/epidemiology , Eye Infections, Bacterial/veterinary , Vitamin A Deficiency/veterinary , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dogs , England/epidemiology , Eye Infections, Bacterial/drug therapy , Eye Infections, Bacterial/epidemiology , Eye Infections, Bacterial/microbiology , Female , Male , Pedigree , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas Infections/veterinary , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Records/veterinary , Retrospective Studies , Streptococcal Infections/drug therapy , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus/drug effects , Streptococcus/isolation & purification , Vitamin A Deficiency/drug therapy , Vitamin A Deficiency/epidemiology , Vitamin A Deficiency/microbiology
7.
ACS Appl Mater Interfaces ; 13(2): 2371-2381, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33404209

ABSTRACT

This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 µm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 µm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.


Subject(s)
Drug Compounding/methods , Drug Delivery Systems , Polyesters/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Capsules/chemistry , Cell Line , Doxycycline/administration & dosage , Doxycycline/pharmacokinetics , Drug Compounding/instrumentation , Equipment Design , HeLa Cells , Humans , Mice , Particle Size , Printing, Three-Dimensional/instrumentation
8.
Article in English | MEDLINE | ID: mdl-32596218

ABSTRACT

The patterned microchamber arrays based on biocompatible polymers are a versatile cargo delivery system for drug storage and site-/time-specific drug release on demand. However, functional evidence of their action on nerve cells, in particular their potential for enabling patterned neuronal morphogenesis, remains unclear. Recently, we have established that the polylactic acid (PLA)-based microchamber arrays are biocompatible with human cells of neuronal phenotype and provide safe loading for hydrophilic substances of low molecular weight, with successive site-specific cargo release on-demand to trigger local cell responses. Here, we load the nerve growth factor (NGF) inside microchambers and grow N2A cells on the surface of patterned microchamber arrays. We find that the neurite outgrowth in local N2A cells can be preferentially directed towards opened microchambers (upon-specific NGF release). These observations suggest the PLA-microchambers can be an efficient drug delivery system for the site-specific delivery of neuropeptides on-demand, potentially suitable for the migratory or axonal guidance of human nerve cells.

9.
Nanoscale ; 12(14): 7735-7748, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32211625

ABSTRACT

Nanoengineered vehicles have the potential to deliver cargo drugs directly to disease sites, but can potentially be cleared by immune system cells or lymphatic drainage. In this study we explore the use of magnetism to hold responsive particles at a delivery site, by incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) into layer-by-layer (LbL) microcapsules. Microcapsules with SPIONs were rapidly phagocytosed by cells but did not trigger cellular ROS synthesis within 24 hours of delivery nor affect cell viability. In a non-directional cell migration assay, SPION containing microcapsules significantly inhibited movement of phagocytosing cells when placed in a magnetic field. Similarly, under flow conditions, a magnetic field retained SPION containing microcapsules at a physiologic wall shear stress of 0.751 dyne cm-2. Even when the SPION content was reduced to 20%, the majority of microcapsules were still retained. Dexamethasone microcrystals were synthesised by solvent evaporation and underwent LbL encapsulation with inclusion of a SPION layer. Despite a lower iron to volume content of these structures compared to microcapsules, they were also retained under shear stress conditions and displayed prolonged release of active drug, beyond 30 hours, measured using a glucocorticoid sensitive reporter cell line generated in this study. Our observations suggest use of SPIONs for magnetic retention of LbL structures is both feasible and biocompatible and has potential application for improved local drug delivery.


Subject(s)
Capsules/chemistry , Dexamethasone/metabolism , Drug Carriers/chemistry , Magnetite Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Dexamethasone/chemistry , Dexamethasone/pharmacology , Drug Liberation , Ferric Compounds/chemistry , Humans , Magnetic Fields , Microscopy, Confocal
11.
Article in English | MEDLINE | ID: mdl-31131111

ABSTRACT

BACKGROUND: In humans, ADAMTS17 mutations are known to cause Weill-Marchesani-like syndrome, which is characterised by lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Breed-specific homozygous mutations in ADAMTS17 are associated with primary open angle glaucoma (POAG) in several dog breeds, including the Petit Basset Griffon Vendeen (PBGV) and Shar Pei (SP). We hypothesised that these mutations are associated with short stature in these breeds. METHODS: Two hundred thirty-three PBGV and 66 SP were genotyped for their breed-specific ADAMTS17 mutations. The height of each dog was measured at the withers. We used linear (per allele) regression to assess the association between ADAMTS17 mutations and height as a continuous variable, and linear regression and likelihood ratio tests to assess the shape of the association by comparing a general model with a linear (per allele) model. RESULTS: The adjusted mean heights of affected, carrier, and clear PBGV were 33.49 cm (n = 21, 95% CI 32.78-34.19 cm), 34.88 cm (n = 85, 95% CI 34.53-35.25 cm), and 34.92 cm (n = 121, 95% CI 34.62-35.21 cm), respectively. The mean heights of affected, carrier, and clear SP were 43.96 cm (n = 9, 95% CI 41.88-46.03 cm), 47.56 cm (n = 28, 95% CI 45.50-48.63 cm), and 48.95 cm (n = 23, 95% CI 47.80-50.11 cm), respectively. There was a significant difference between the height of affected and clear animals in the PBGV (P = 0.001) and the SP (P = < 0.0001). CONCLUSIONS: ADAMTS17 POAG mutations are significantly associated with height in these breeds.

12.
Mater Sci Eng C Mater Biol Appl ; 94: 647-655, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30423750

ABSTRACT

High frequency alternating magnetic fields (AMF) have been widely used as a non-invasive method to induce local hyperthermia for antitumor treatment and to efficiently trigger drug release from various carriers. However, few studies have exploited the potential of targeted drug delivery to healthy cells or tissue and the use of low frequency AMF (LF-AMF) for intracellular triggered release. To achieve this goal, doxycycline was delivered with the layer-by-layer (LbL) assembled magnetic microcapsules, and AMF with low frequency (50 Hz) was applied. The low frequency AMF had little effect on morphology of microcapsules, which upon exposure for 360 min caused no significant damage and had the advantage of minimizing heating effects. Nonetheless, microcapsule permeability increased as a function of exposure time when assessed using FITC-dextran (70 kDa) with the number of permeable microcapsules increased from 13.5% (20 min) to 52.8% (360 min). Increased permeability also enhanced in vitro doxycycline release in genetically engineered myoblast cells where EGFP expression is regulated by the tetracycline system, while targeted EGFP expression was observed by magnetically navigating the microcapsules to a site of interest. Upon LF-AMF exposure of 30 min, no cytotoxicity was observed, but intracellular doxycycline release was promoted and enhanced EGFP expression as demonstrated by EGFP fluorescence intensity measurement. This study reveals the possibility of targeted drug delivery and using LF-AMF as a non-cytotoxic intracellular trigger of drug release from microcapsules without alteration in cell viability.


Subject(s)
Drug Liberation , Magnetic Fields , Animals , Capsules , Cell Death/drug effects , Cell Line , Doxycycline/pharmacology , Green Fluorescent Proteins/metabolism , Kinetics , Mice , Myoblasts/cytology , Myoblasts/drug effects , Permeability
13.
ACS Appl Mater Interfaces ; 10(17): 14367-14377, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29633830

ABSTRACT

The design of novel, effective drug delivery systems is one of the most promising ways to improve the treatment of socially important diseases. This article reports on an innovative approach to the production of composite microcontainers (microcapsules) bearing advanced protective functions. Cerium oxide (CeO2) nanoparticles were incorporated into layer-by-layer polyelectrolyte microcapsules as a protective shell for an encapsulated enzyme (luciferase of Photinus pyralis), preventing its oxidation by hydrogen peroxide, the most abundant type of reactive oxygen species (ROS). The protective effect depends on CeO2 loading in the shell: at a low concentration, CeO2 nanoparticles only scavenge ROS, whereas a higher content leads to a decrease in access for both ROS and the substrate to the enzyme in the core. By varying the nanoparticle concentration in the microcapsule, it is possible to control the level of core shielding, from ROS filtering to complete blocking. A comprehensive analysis of microcapsules by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, confocal laser scanning microscopy, and energy-dispersive X-ray spectroscopy techniques was carried out. Composite microcapsules decorated with CeO2 nanoparticles and encapsulated luciferase were shown to be easily taken up by rat B-50 neuronal cells; they are nontoxic and are able to protect cells from the oxidative stress induced by hydrogen peroxide. The approach demonstrated that the active protection of microencapsulated substances by CeO2 nanoparticles can be used in the development of new drug delivery and diagnostic systems.


Subject(s)
Nanoparticles , Animals , Capsules , Cerium , Luciferases , Oxidative Stress , Rats , Reactive Oxygen Species
14.
J Control Release ; 276: 84-92, 2018 04 28.
Article in English | MEDLINE | ID: mdl-29501723

ABSTRACT

Controlled drug delivery and gene expression is required for a large variety of applications including cancer therapy, wound healing, cell migration, cell modification, cell-analysis, reproductive and regenerative medicine. Controlled delivery of precise amounts of drugs to a single cell is especially interesting for cell and tissue engineering as well as therapeutics and has until now required the application of micro-pipettes, precisely placed dispersed drug delivery vehicles, or injections close to or into the cell. Here we present surface bound micro-chamber arrays able to store small hydrophilic molecules for prolonged times in subaqueous conditions supporting spatiotemporal near infrared laser mediated release. The micro-chambers (MCs) are composed of biocompatible and biodegradable polylactic acid (PLA). Biocompatible gold nanoparticles are employed as light harvesting agents to facilitate photothermal MC opening. The degree of photothermal heating is determined by numerical simulations utilizing optical properties of the MC, and confirmed by Brownian motion measurements of laser-irradiated micro-particles exhibiting similar optical properties like the MCs. The amount of bioactive small molecular cargo (doxycycline) from local release is determined by fluorescence spectroscopy and gene expression in isolated C2C12 cells via enhanced green fluorescent protein (EGFP) biosynthesis.


Subject(s)
Drug Delivery Systems , Anti-Bacterial Agents/administration & dosage , Cell Line , Doxycycline/administration & dosage , Gold/administration & dosage , Green Fluorescent Proteins/genetics , Humans , Lasers , Light , Metal Nanoparticles/administration & dosage , Polyesters/administration & dosage
15.
J Electromyogr Kinesiol ; 39: 8-15, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29353139

ABSTRACT

BACKGROUND: Stair-related falls of older people cause a substantial financial and social burden. Deterioration of the visual system amongst other factors put older people at a high risk of falling. Improved lighting is often recommended. The aim of this study was to investigate the effect of lighting illuminance on stair negotiation performance in older individuals with visual impairment. METHODS: Eleven participants aged 60 or over with a vision of 6/18 or worse ascended and descended a staircase under: 50 lx, 100 lx, 200 lx, 300 lx and distributed 200 lx lighting. A motion capture system was used to measure movements of the lower limb. Clearance, clearance variability, temporal and spatial parameters and joint/segment kinematics were computed. FINDINGS: There was no effect on clearance or clearance variability. Participants had lower speed, cadence, increased cycle time and stance time in the 50 lx compared to 300 lx and distributed 200 lx lighting in descent. The minimum hip angle in ascent was increased in the 200 lx lighting. Clearance was found to be moderately correlated with balance scores. INTERPRETATION: Individuals with visual impairment adopt precautionary gait in dim lighting conditions. This does not always result in improvements in the parameters associated with risk of falling (e.g. clearance).


Subject(s)
Lighting , Muscle, Skeletal/physiology , Vision Disorders/physiopathology , Walking , Accidental Falls , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Humans , Male , Postural Balance
16.
Vet Rec Open ; 5(1): e000298, 2018.
Article in English | MEDLINE | ID: mdl-30613403

ABSTRACT

OBJECTIVES: To evaluate the combined effect of intramuscular acepromazine and methadone on tear production in dogs undergoing general anaesthesia for elective, non-ocular procedures. DESIGN: Prospective, non-randomised, pre-post treatment study. SETTING: Patients were recruited from a referral practice in the UK. METHODS: Thirty client-owned dogs were enrolled in this study and received a combined intramuscular premedication of methadone (0.3 mg/kg) and acepromazine (0.02 mg/kg) before general anaesthesia for elective, non-ocular procedures. Full ophthalmic examination was performed and tear production was quantified using the Schirmer tear test-1 (STT-1). On the day of general anaesthesia, an STT-1 was performed before (STT-1a) and after (STT-1b) intramuscular premedication with methadone/acepromazine. RESULTS: Using a general linear model, a significant effect on STT-1 results was found for premedication with methadone/acepromazine (P=0.013), but not eye laterality (P=0.527). Following premedication, there was a significant reduction observed in the mean STT-1 readings of left and right eyes between STT-1a (20.4±2.8 mm/min) and STT-1b (16.9±4.1 mm/min; P<0.001). Significantly more dogs had an STT-1 reading less than 15 mm/min in one or both eyes after premedication (30 per cent; 9/30 dogs) compared with before premedication (6.7 per cent; 2/30 dogs; P=0.042). CONCLUSIONS: An intramuscular premedication of methadone and acepromazine results in a decrease in tear production in dogs before elective general anaesthesia. This may contribute to the risk of ocular morbidities, such as corneal ulceration, particularly in patients with lower baseline tear production.

17.
Foot Ankle Surg ; 23(4): 285-289, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29202989

ABSTRACT

BACKGROUND: Shockwave treatment is increasingly used for plantar fasciitis and Achilles tendinopathy. To be effective it is believed that high pressure must be achieved in the tissues. We report on the first human cadaveric experiments to characterize pressure from radial shockwave therapy (rSWT) for plantar fasciitis. METHODS: The pressure from rSWT was measured in two cadaveric feet using a needle hydrophone. Maximal pressure and energy flux were calculated from the measurements. RESULTS: The pressure persisted longer than supposed, for up to 400µs. The peak negative pressure was up to two Mega Pascal. The predicted energy in the tissue strongly depended on the time interval used in calculations. CONCLUSIONS: The measured pressure may be sufficiently high to cause cavitation in the tissue, which is one of the proposed healing mechanisms associated with rSWT. The results suggest that the energy is imparted to the tissues for much longer than previously thought.


Subject(s)
Fasciitis, Plantar , High-Energy Shock Waves , Pressure , Cadaver , Fasciitis, Plantar/therapy , High-Energy Shock Waves/therapeutic use , Humans
18.
Methods Mol Biol ; 1651: 1-7, 2017.
Article in English | MEDLINE | ID: mdl-28801895

ABSTRACT

Before designing a synthetic promoter, it can be helpful to think about its final application. Is the study purely an in vitro exercise in monitoring short-term promoter activity from an episomal vector, or does the promoter eventually need to be permanently active and be integrated into the genome or perhaps even to function in vivo? The final application will have a bearing on promoter design and vector of choice from the start of the study. In this chapter I highlight some of the vector attributes to consider and features that should be thought about.


Subject(s)
Cloning, Molecular/methods , Genes, Reporter , Genetic Vectors/genetics , Plasmids/genetics , Promoter Regions, Genetic , Animals , Gene Expression Regulation , Genetic Therapy , Genetic Vectors/immunology , Humans , Immunogenetic Phenomena , Plasmids/immunology , Synthetic Biology
19.
Methods Mol Biol ; 1651: 11-21, 2017.
Article in English | MEDLINE | ID: mdl-28801896

ABSTRACT

Confirming the binding of a transcription factor with a particular DNA sequence may be important in characterizing interactions with a synthetic promoter. Electrophoretic mobility shift assay is a powerful approach to demonstrate the specific DNA sequence that is bound by a transcription factor and also to confirm the specific transcription factor involved in the interaction. In this chapter we describe a method we have successfully used to demonstrate interactions of endogenous transcription factors with sequences derived from endogenous and synthetic promoters.


Subject(s)
DNA/metabolism , Electrophoretic Mobility Shift Assay/methods , Transcription Factors/metabolism , Base Sequence , Binding Sites , Cell Line , DNA/chemistry , DNA/genetics , Erythroid-Specific DNA-Binding Factors/metabolism , Humans , Jurkat Cells , NF-kappa B/metabolism , Promoter Regions, Genetic , Protein Binding
20.
Methods Mol Biol ; 1651: 147-156, 2017.
Article in English | MEDLINE | ID: mdl-28801905

ABSTRACT

In this chapter, we describe a two-step assembly PCR method to construct synthetic promoters. Essentially, this method takes advantage of specific annealing between complimentary DNA sequences to build random TFBS combinations within the assembled PCR products. A DNA polymerase is then employed to fill in the unpaired nucleotides in the generated sequences and also to amplify the assembled PCR products. We have used this method to generate synthetic promoters whereby the orientation of the TFBS can be controlled, the spacing between TFBS can be predetermined, and also the full diversity of the consensus TFBS can be covered through the use of degenerate oligonucleotides .


Subject(s)
DNA/genetics , Polymerase Chain Reaction/methods , Promoter Regions, Genetic , Oligonucleotides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...