Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Environ Entomol ; 53(4): 532-543, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38767977

ABSTRACT

Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has caused extensive mortality of ash across North America. Biological control offers a potential long-term management option, allowing for long-term survival of ash. Careful monitoring of populations of biocontrol agents is necessary to understand their relative impacts. Understanding the emergence and flight phenology of these species allows for the optimization of monitoring schemes and improves our understanding of host-parasitoid interactions. We used yellow pan trapping data to assess the adult phenology of both EAB and its associated native and introduced parasitoids in 3 New York counties. We monitored 2 introduced larval biocontrol agents, Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius galinae Belokobylskij & Strazanac (Braconidae), for 3-4 years post-release, as well as the native parasitoid Phasgonophora sulcata Westword (Chalcididae). Results indicate a single discrete emergence event for both EAB and P. sulcata in all monitored counties, which is consistent with previously reported results. Our results also suggest there are 4 generations per year of T. planipennisi and 3 generations of S. galinae in the monitored counties. We recorded an additional generation of T. planipennisi that had not previously been reported in New York, and both T. planipennisi and S. galinae appeared to emerge earlier than previously documented.


Subject(s)
Coleoptera , Fraxinus , Pest Control, Biological , Wasps , Animals , Female , Male , Coleoptera/parasitology , Coleoptera/growth & development , Fraxinus/parasitology , Host-Parasite Interactions , Introduced Species , Larva/growth & development , Larva/parasitology , New York , Seasons , Wasps/physiology , Wasps/growth & development
2.
Parasite ; 30: 57, 2023.
Article in English | MEDLINE | ID: mdl-38084938

ABSTRACT

The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is a destructive invasive woodboring insect pest, and efforts are being made to find parasitoids for ALB biological control. Through a four-year survey in Korea using a sentinel log trap associated with host chemical cues potentially important for host finding by parasitoids, two parasitoid species were discovered attacking ALB. One species is Spathius ibarakius Belokobylskij & Maetô, which is known to also parasitize citrus longhorned beetle, Anoplophora chinensis (Forster). The other parasitoid species, whose offspring were dead before imago, could not be morphologically identified at the adult stage. We attempted molecular and morphological identification of the larvae/pupae of the unidentified parasitoid; however, only superfamily-level identification was possible. The parasitism rate recovered in the logs was 0.3% by the unidentified parasitoid in Gapyeong-gun in 2019, while it reached 29.2% by S. ibarakius in Busan city in 2022. Future efforts for exploring ALB natural enemies in the pest's native range may focus on parasitoids with high parasitism rates.


Title: Exploration des parasitoïdes du longicorne asiatique en Corée à l'aide d'un piège à bûche sentinelle amélioré. Abstract: Le longicorne asiatique (LA), Anoplophora glabripennis (Motschulsky) (Coleoptera : Cerambycidae), est un insecte ravageur envahissant et destructeur du bois, et des efforts sont déployés pour trouver des parasitoïdes pour la lutte biologique contre lui. Au cours d'une étude de quatre ans en Corée utilisant un piège à bûche sentinelle associé à des signaux chimiques de l'hôte potentiellement importants pour la détection de l'hôte par les parasitoïdes, deux espèces de parasitoïdes ont été découvertes attaquant le longicorne. Une espèce est Spathius ibarakius Belokobylskij & Maetô, qui est connue pour parasiter également le longicorne des agrumes, Anoplophora chinensis (Forster). Les autres espèces de parasitoïdes, dont les descendants sont morts avant l'imago, n'ont pu être identifiées morphologiquement au stade adulte. Nous avons tenté une identification moléculaire et morphologique des larves/pupes du parasitoïde non identifié, mais seule une identification au niveau de la superfamille a été possible. Le taux de parasitisme observé dans les bûches était de 0,3 % par le parasitoïde non identifié à Gapyeong-gun en 2019, tandis qu'il atteignait 29,2 % par S. ibarakius dans la ville de Busan en 2022. Les efforts futurs pour explorer les ennemis naturels du capricorne dans l'aire de répartition naturelle du ravageur pourraient se concentrer sur les parasitoïdes à taux de parasitisme élevés.


Subject(s)
Coleoptera , Hymenoptera , Animals , Larva , Republic of Korea
3.
J Econ Entomol ; 116(4): 1155-1164, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37335889

ABSTRACT

Forest stands infested by emerald ash borer (EAB), Agrilus planipennis Fairmaire, experience extensive mortality of mature ash trees. Post-invasion woodlands commonly have a small contingent of mature lingering ash, an orphaned cohort of seedlings/saplings, and low EAB densities. To protect regenerating ash against rebounding EAB populations, a suite of biocontrol agents are being reared and released. USDA APHIS guidelines currently recommend the release of parasitoids into forests prior to overstory ash mortality at sites containing a variety of ash size classes and low to moderate but building EAB densities. To understand if biocontrol establishment and control of EAB is feasible in post-invasion sites, we assessed the establishment of parasitoids in 6 post-invasion forest stands in 2 regions of NY and compared EAB mortality in these stands to 2 regions where releases were conducted during the early-invasion phase. Results of parasitoid trapping indicates Tetrastichus planipennisi Yang established under both release strategies. Spathius galinae Belokobylskij & Strazanac was only released in post-invasion stands, where it was established successfully. Artificial EAB cohorts were established and life tables were constructed at 3 sites per region. EAB mortality due to T. planipennisi parasitism was similar under both release strategies 2 yr after release in post-invasion stands versus 8 yr after release in early-invasion stands. Combined mortality from T. planipennisi and woodpecker predation resulted in consistently low EAB reproductive rates. Future biocontrol releases could target forests identified as economically or ecologically important, regardless of whether EAB populations are increasing or have collapsed following initial invasion.


Subject(s)
Coleoptera , Fraxinus , Hymenoptera , Animals , Larva , Pest Control, Biological/methods
4.
Front Insect Sci ; 3: 1154697, 2023.
Article in English | MEDLINE | ID: mdl-38469478

ABSTRACT

The spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), an invasive planthopper discovered in Pennsylvania, U.S. in 2014, has spread to many surrounding states despite quarantines and control efforts, and further spread is anticipated. A classical (importation) biological control program would contribute to the long-term management of L. delicatula in the eastern U.S. In its native range of China, Anastatus orientalis (Hymenoptera: Eupelmidae), an egg parasitoid, causes significant mortality. Anastatus orientalis consists of multiple haplotypes that differ in important biological parameters. To delineate the physiological host range of A. orientalis Haplotype C, we completed no-choice and choice testing. No-choice testing of non-target eggs from 36 insect species spanning six orders and 18 families showed that physiologically this haplotype of A. orientalis can develop in a variety of host species eggs from the families Coreidae, Fulgoridae, Pentatomidae, and Saturniidae. Ten of the 16 species that were attacked in the no-choice tests were also attacked in the choice tests. The production of progeny on non-target egg masses was significantly lower than on the controls (L. delicatula egg masses run simultaneously) in the no-choice and choice tests. For the non-target species that were attacked and resulted in female wasp progeny, these females were able to produce their own progeny at the same rate as control females that were reared from the L. delicatula eggs. Larger host eggs corresponded to an increased female-biased sex ratio of the progeny, suggesting that gravid females select them for fertilized eggs. Results from these studies suggest that A. orientalis Haplotype C prefers to parasitize L. delicatula egg masses but is capable of developing in some non-target species.

5.
Front Insect Sci ; 3: 1153723, 2023.
Article in English | MEDLINE | ID: mdl-38469490

ABSTRACT

Transgenerational experience can affect a range of natural enemies' life-history traits and can be involved in the control of developmental plasticity. As a major egg parasitoid of the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), the wasp Anastatus orientalis (Hymenoptera: Eupelmidae) is effective at suppressing its host populations. The reproductive and developmental traits of A. orientalis is known to depend on photoperiod conditions, but transgenerational photoperiodic effects have yet to be evaluated. To evaluate the transgenerational photoperiodic effects on A. orientalis, we assessed wasp adult longevity, female fecundity, sex ratio, and diapause rate over three consecutive generations under different experimental photoperiods (L16:D8, L12:D12, and L8:D16), using Antheraea pernyi (Lepidoptera: Saturniidae) eggs as hosts. The results suggest that transgenerational experience significantly impacts several biological parameters of progeny. All parasitoids entered a diapause under the long photoperiod condition (i.e., L16:D8), after which the number of female parasitoids and fecundity of the 2nd and 3rd generations increased significantly as compared to the 1st generation. With the long photoperiod conditions, the female ratio rose from 68.1% (1st generation) to 86.0% (3rd generation) and the progeny per females increased from 35.8 to 75.7. However, adult longevity of females and males were shortened significantly. With the intermediate photoperiod (L12:D12) conditions, fecundity and sex ratio of the 2nd and 3rd generations increased significantly as compared to the 1st generation. With the short photoperiod (L8:D16) conditions, there were no significant differences in fecundity among three generations, but sex ratio of the 2nd and 3rd generations increased significantly as compared to the 1st generation. These results on transgenerational photoperiodic effects can be applied to improve laboratory rearing efficiency of parasitoids and to better understand population dynamics in the field across a latitudinal gradient.

6.
Front Insect Sci ; 3: 1154651, 2023.
Article in English | MEDLINE | ID: mdl-38469524

ABSTRACT

Anastatus orientalis, native to northern China, is an egg parasitoid wasp of the spotted lanternfly (Lycorma delicatula) and is being tested as a potential biological control agent for invasive L. delicatula in the United States. As a component of these evaluations, live A. orientalis collected from Beijing and Yantai in China were reared in containment in the U.S. These specimens showed different responses in diapause behaviors to rearing conditions used previously by other researchers. To understand the primary mechanism potentially driving discrepancies in important life history traits, we used molecular tools to examine the genetic composition of A. orientalis from China and from South Korea, where the parasitoid has been introduced to aid in the population management of invasive L. delicatula. Molecular analysis of mitochondrial DNA recovered six haplotype groups, which exhibit biased frequency of abundance between collection sites. Some haplotypes are widespread, and others only occur in certain locations. No apparent pattern is observed between wasps collected from different years or emergence seasons. Uncorrected genetic distances between haplotype groups range from 0.44% to 1.44% after controlling for within-group variation. Genetic variance of A. orientalis is characterized by high levels of local diversity that contrasts with a lack of a broad-scale population structure. The introduced Korean population exhibits lower genetic diversity compared to native populations. Additionally, we created iso-female lines for major haplotype groups through laboratory rearing. Differences in diapause behavior were correlated with mitochondrial haplotype. Our results indicate that the observed life history traits in A. orientalis have a genetic base.

7.
J Econ Entomol ; 115(5): 1442-1454, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35640222

ABSTRACT

Despite a robust biocontrol program against emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), parasitoid populations cannot build quickly enough to save mature ash trees. The future of ash as a viable component of North American forests depends on survival of immature ash that were too small to be attacked during the initial outbreak. This study was designed to quantify impacts of established introduced parasitoids and native woodpeckers on the population growth of emerald ash borer infesting regenerating ash saplings in white ash forests. Most emerald ash borer larvae were killed by Tetrastichus planipennisi Yang and woodpeckers in the fourth instar. Life-table analyses revealed that the estimated net reproductive rate of emerald ash borer was R0 = 4.2 in eastern New York and R0 = 0.0 in western New York. Without mortality from parasitoids and woodpeckers, R0 values would have been 16.4 and 7.9 in eastern and western New York, respectively. We monitored the health of mature and sapling ash trees from 2012 to 2017 and found that large trees were significantly more likely to be infested with emerald ash borer and to die than smaller trees. Fifty-four percent to 81% of ash saplings contained no living emerald ash borer, and the density of emerald ash borer at all sites was very low (< 4/m2). This study adds to the growing body of evidence that emerald ash borer biocontrol is contributing to population control and can help promote survival of young ash trees as forests recover from emerald ash borer outbreaks.


Subject(s)
Coleoptera , Fraxinus , Animals , Forests , Larva , New York , Pest Control, Biological
8.
Front Insect Sci ; 2: 1025193, 2022.
Article in English | MEDLINE | ID: mdl-38468780

ABSTRACT

Lycorma delicatula, White (Hemiptera: Fulgoridae), spotted lanternfly, is a univoltine, phloem-feeding, polyphagous and invasive insect in the USA. Although a primary host for this species is Ailanthus altissima, tree of heaven, L. delicatula also feeds on a wide range of hosts important to the USA including cultivated grapevines. Due to the need for classical or augmentative biological control programs to reduce impacts of L. delicatula across invaded areas, we developed a laboratory-based rearing protocol for this invasive species. Here, we evaluated the use of A. altissima apical meristems, epicormic shoots, and fresh foliage cut from A. altissima as a food source for rearing newly hatched L. delicatula. On these sources of plant material <20% of L. delicatula developed into adults and no oviposition occurred. However, when young, potted A. altissima trees were used as a food source, >50% of L. delicatula nymphs developed to the adult stage under natural daylengths and temperatures ranging from 20-25°C. The addition of wild grapevine, Vitis riparia, did not increase survivorship or reduce development time. To elicit mating and oviposition, adults were provided with A. altissima logs as an oviposition substrate and maintained under shortened daylengths and reduced nighttime temperatures (12L:12D and 24°C:13°C). This resulted in 2.12 egg masses deposited per female, which was 4× more than when adults were maintained in standard rearing conditions (16L:8D and 25°C). Based on these experiments, we present a protocol for reliably rearing L. delicatula under laboratory and/or greenhouse conditions.

9.
Environ Entomol ; 50(1): 28-35, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33247300

ABSTRACT

To support efforts to manage and contain spotted lanternfly (SLF), Lycorma delicatula White (Hemiptera: Fulgoridae), research is being conducted to develop classical biological control methods. To date, two potential biocontrol agents from China have been identified: an egg parasitoid, Anastatus orientalis, and a nymphal parasitoid, Dryinus sinicus Olmi (Hymenoptera: Dryinidae). The research detailed here focuses on investigating the biology and rearing of A. orientalis to assess its potential efficacy in a biocontrol program and optimize its rearing. Female wasps lived significantly longer than male wasps (68 and 23 d, respectively) and females produced an average of 94 total progeny that successfully emerged as adults, with most progeny produced between weeks one and four of the females' lives. The sex ratio of the progeny, with no re-mating, was initially highly female-biased but became progressively more male-biased, likely due to sperm depletion. There was no evidence of additional mortality to SLF eggs from wasp host feeding, but the data were highly variable and the sample size was small. There was high parasitoid emergence when oviposition conditions mimicked mid-September Beijing temperature and photoperiod; however, there was little emergence under 25°C and long-day conditions because most progeny entered a diapause. Storage of parasitized eggs in 5°C chill lowered parasitoid emergence rates. Lastly, there was no evidence that storing field-collected SLF egg masses in 5°C for 10 mo prior to parasitization affected parasitism rates. These findings inform our rearing protocol for A. orientalis and facilitate our testing of this species as a potential biological control agent for SLF.


Subject(s)
Hemiptera , Hymenoptera , Wasps , Animals , China , Female , Male , Nymph , Ovum
10.
Environ Entomol ; 50(1): 36-45, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33301027

ABSTRACT

An invasive population of spotted lanternfly (SLF), Lycorma delicatula White, was first noted in North America in Pennsylvania in 2014, and by September 2020 populations had spread to six additional states. To develop a biocontrol program to aid in the management of the pest, exploratory surveys for SLF natural enemies in its native range were carried out in 27 provinces and other administrative regions of China from 2015 to 2019. Naturally laid egg masses were collected and sentinel SLF egg masses were deployed to attract egg parasitoids, and yellow sticky traps were used to collect SLF nymphs to discover and determine the parasitism rates of nymphal parasitoids. Results show that SLF is widely distributed in China (22 provinces and regions) and that the population densities in northeast China are higher than in southern and western China. An egg parasitoid, Anastatus orientalis Yang (Hymenoptera: Eupelmidae), and a nymphal parasitoid, Dryinus sinicus Olmi (Hymenoptera: Dryinidae), were collected. Anastatus orientalis was reared from SLF eggs in seven provinces in China with parasitoid emergence rates ranging from 4.0 to 15.5% (or 17.6 to 37.3% if including only egg masses that had at least some parasitism). There were significant differences in parasitoid emergence rates between sites associated with factors including habitat and host plants. Dryinus sinicus was discovered in eight cities across six provinces. The percentage of SLF nymphs parasitized by D. sinicus were 31.1, 23.3, and 0% in Tai'an, Shandong Province, Beijing City, and Yan'an, Shaanxi Province, respectively. These two parasitoids are promising natural enemies that are being considered as potential biocontrol agents of invasive populations of SLF.


Subject(s)
Hemiptera , Animals , China , Cities , North America , Ovum , Pennsylvania
11.
J Econ Entomol ; 113(6): 2641-2649, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33057617

ABSTRACT

Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is one of the most serious forest pests in the United States. Ongoing research indicates that establishment of larval parasitoids depends upon the season-long availability of host stages susceptible to parasitism. We monitored emerald ash borer overwintering stages at 90 sites across 22 states to: 1) produce a model of the percentage of emerald ash borer overwintering as non-J larvae; 2) link that model to establishment of Tetrastichus planipennisi; and 3) explore changes to our model under climate change scenarios. Accumulated growing degree days (GDD) is an important predictor of the proportion of emerald ash borer overwintering as non-J larvae (1-4 instar larvae under the bark; available to parasitoids emerging in spring) versus J-larvae (fourth-instar larvae in pupal chambers in the outer wood; unavailable to parasitoids). From north to south, the availability of non-J emerald ash borer larvae in the spring decreases as accumulated GDD increases. In areas where the model predicted >46-75%, >30-46%, >13-30%, or ≤13% of emerald ash borer overwintering as non-J larvae, the probability of establishment of T. planipennisi was 92%, 67%, 57%, and 21%, respectively. We determined that 13% of emerald ash borer overwintering as non-J larvae was the lowest threshold for expected T. planipennisi establishment. Additional modeling predicts that under climate change, establishment of T. planipennisi will be most affected in the Central United States, with areas that are currently suitable becoming unsuitable. Our results provide a useful tool for the emerald ash borer biological control program on how to economically and successfully deploy emerald ash borer biological control agents.


Subject(s)
Coleoptera , Fraxinus , Wasps , Animals , Climate Change , Larva , Pest Control, Biological
12.
Environ Entomol ; 49(5): 1041-1048, 2020 10 17.
Article in English | MEDLINE | ID: mdl-32794565

ABSTRACT

Ontsira mellipes Ashmead is a gregarious larval ectoparasitoid of woodboring cerambycids. It is native to North America but can readily attack the exotic Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). This study aimed to develop an efficient rearing system for this parasitoid, as a potential novel association biocontrol agent for the beetle, by investigating the effects of different densities of host (two, three, or four larvae) and parasitoid (one, two, three, four, five, six, seven, and eight female wasps) on Ontsira's parasitization efficiency and reproductive outcomes. Results showed that overall parasitism and total numbers of parasitized hosts or progeny produced increased with host and/or parasitoid densities, but the number of parasitized hosts or progeny produced per female parasitoid decreased with parasitoid density at each given host density. Nonlinear regression indicated a consistent pattern of mutual interference as parasitoid density increased. Additional experiments showed that superparasitism (indirect interference) did not occur probably because the parasitoid detects hosts through vibration cues from host feeding and attacked (thus paralyzed) hosts are no longer detectable. Thus, the interference probably results from direct or exploitative competition. Interestingly, female parasitoids responded to increased parasitoid density with a significant increase in clutch size. Overall, per capita parasitization efficiency or reproductive outcomes were optimized at a low parasitoid-host ratio but with large group size of hosts and parasitoids. Therefore, an optimal combination of exposing three or four parasitoids to four hosts is proposed for efficient mass-rearing of this parasitoid.


Subject(s)
Coleoptera , Hymenoptera , Wasps , Animals , Asian People , Female , Host-Parasite Interactions , Humans , Larva , North America
13.
J Econ Entomol ; 113(4): 1656-1665, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32300789

ABSTRACT

Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), is a high-risk invasive forest pest worldwide. We surveyed Asian longhorned beetle parasitoid guilds and their seasonal abundance using field-deployed sentinel host logs infested with Asian longhorned beetle eggs or newly hatched (early-instar) larvae in three different sites of China (Beijing City, Shanghai City, and Jilin Province) from 2015 to 2018. Our survey detected 12 species of hymenopteran parasitoids (four Pteromalidae, three Braconidae, two Eupelmidae, one Eurytomidae, one Ichneumonidae, and one Bethylidae) attacking sentinel Asian longhorned beetle larvae or eggs deployed in these sites. Total parasitism by all the parasitoid species varied with different sites and across different years of the survey (averaging 7-16% in Beijing, 4-11% in Shanghai, and 0-0.2% in Jilin Province). In addition, the seasonal pattern of parasitism also differed among different sites, with parasitism peaking in July in the northern site (Beijing, 19%) and June in the southern site (Shanghai, 16%). Among all the parasitoid species recovered, Oxysychus sp. (Hymenoptera: Pteromalidae) was the most abundant parasitoid species in both Beijing and Shanghai (with 42-66% relative abundance and an average of 6% Asian longhorned beetle parasitism). The second most abundant species was Bracon planitibiae Yang, Cao et Gould (Hymenoptera: Braconidae), which accounted for 35% of the species collected and caused an average of 5% Asian longhorned beetle parasitism. Relevance of our findings to Asian longhorned beetle biocontrol is discussed.


Subject(s)
Coleoptera , Animals , China , Cities , Larva , Seasons
14.
J Econ Entomol ; 113(2): 622-632, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31828305

ABSTRACT

Biological control offers a long-term and sustainable option for controlling the destructive forest pest emerald ash borer (EAB), Agrilus planipennis Fairmaire, in North America. Three larval parasitoids, Spathius agrili Yang (Hymenoptera: Braconidae), Tetrastichus planipennisi Yang (Eulophidae), and Spathius galinae Belokobylskij & Strazanac, have been introduced to North America from the native range of EAB (northeastern Asia). While T. planipennisi appears to be persisting where it has been introduced in northern United States, S. agrili failed to establish in northeastern states. The more recently identified parasitoid S. galinae was recovered from the Russian Far East and climate matching suggests it should be suited for release in colder climates. We collected data on the phenology of EAB and its introduced larval parasitoids from colonies established in an insectary, growth chambers, and field-caged trees in Syracuse, New York to determine whether asynchrony between parasitoids and EAB or climate could impact establishment and persistence. Phenological data indicated EAB has one and 2-yr life cycles in New York, with parasitoid-susceptible EAB larvae available spring to fall for parasitism. Insectary and growth chamber studies indicated S. galinae and T. planipennisi were synchronous with EAB phenology, and field studies suggested both species could overwinter in northeastern climates. Spathius agrili was asynchronous with EAB phenology and climate, emerging when fewer parasitoid-susceptible EAB larvae were available and temperatures were not optimal for survival. Our results suggest S. galinae and T. planipennisi are suited for biological control of EAB at the northern limits of its range in North America.


Subject(s)
Coleoptera , Fraxinus , Wasps , Animals , Larva , New England , New York , North America , Pest Control, Biological , Russia
15.
Zootaxa ; 4671(3): zootaxa.4671.3.8, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31716047

ABSTRACT

Bracon planitibiae sp. nov. (Hymenoptera, Braconidae), a new species parasitizing first instar larvae of Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), (Coleoptera: Cerambycidae), is described. Its host is a serious wood boring pest in China, North America and Europe, where it causes severe damages to plantations of Acer spp., Populus spp., Salix spp., Ulmus spp., and many other ornamental and forest tree species. We obtained a variety of parasitoid species by using Asian longhorned beetle-infested sentinel logs to attract natural parasitoids, of which B. planitibiae sp. nov. is one. Detailed photographs of the new species are provided.


Subject(s)
Coleoptera , Hymenoptera , Animals , China , Europe , North America
16.
Environ Entomol ; 48(6): 1270-1276, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31603497

ABSTRACT

The spotted lanternfly, Lycorma delicatula White (1845) (Hemiptera: Fulgoridae), is an invasive insect that was first reported in North America in Berks County, Pennsylvania, in 2014. It is a polyphagous phloem feeder that attacks over 70 plant species, threatening the agricultural, lumber, and ornamental industries of North America. Infestations of the pest have been reported in several U.S. counties, and a lack of endemic predators and parasitoids feeding on L. delicatula suggests a release from natural enemies in the invaded range. An egg-parasitoid Anastatus orientalis (Hymenoptera: Eupelmidae) was reported attacking L. delicatula at high rates in its native range and may play a key role in reducing its populations there. To better understand the foraging behavior of A. orientalis, a series of behavioral experiments were conducted to determine successful parasitism and behavioral responses to traces left by adult L. delicatula and to the oothecae which cover their eggs. Our results suggest that wasps detected chemical traces left by L. delicatula adults while walking on surfaces and exhibited a strong arrestment response. Moreover, wasps preferred to oviposit in egg masses with intact oothecae. The implications of these findings are herein discussed with regard to the exploitation of host kairomones by foraging wasps, as well as to its ability to overcome host structural defenses.


Subject(s)
Coleoptera , Hemiptera , Wasps , Animals , Host-Parasite Interactions , North America , Pennsylvania
17.
Environ Entomol ; 48(5): 1214-1222, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31501859

ABSTRACT

We collected data on mortality of late-instar gypsy moth, Lymantria dispar (L.), from outbreak populations over 4 wk in June 2017 at 10 sites in the New England region of the United States, along with estimated rainfall at these sites. Deposition of airborne conidia of the fungal pathogen, Entomophaga maimaiga Humber, Shimazu & R.S. Soper, was measured at these same sites as well as at seven other locations in New England. We also quantified the geographical distribution of gypsy moth-caused defoliation in New England in 2017 and 2018 from Landsat imagery. Weekly mortality of gypsy moth larvae caused by E. maimaiga correlated with local deposition of conidia from the previous week, but not with rainfall. Mortality from this pathogen reached a peak during the last 2 wk of gypsy moth larval development and always exceeded that caused by LdNPV, the viral pathogen of gypsy moth that has long been associated with gypsy moth outbreaks, especially prior to 1989. Cotesia melanoscela (Ratzeburg) was by far the most abundant parasitoid recovered and caused an average of 12.6% cumulative parasitism, but varied widely among sites. Deposition of E. maimaiga conidia was highly correlated with percent land area defoliated by gypsy moths within distances of 1 and 2 km but was not significantly correlated with defoliation at distances greater than 2 km. This is the first study to relate deposition of airborne conidia of E. maimaiga to mortality of gypsy moths from that agent.


Subject(s)
Entomophthorales , Moths , Animals , Larva , Spores, Fungal
18.
J Econ Entomol ; 112(5): 2121-2130, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31206578

ABSTRACT

The emerald ash borer (EAB), Agrilus planipennis Fairmaire, a buprestid beetle native to Asia, has become a serious pest of ash trees (Fraxinus spp.) in North America since the early 2000s. Due to the impracticality of applying insecticides in natural forests, biocontrol is the most viable method to manage EAB in natural ecosystems. Here, we report the first evidence for the establishment and impact of Spathius galinae Belokobylskij & Strazenac, a larval parasitoid first released in North America in 2016 and 2017 at six mixed-hardwood forest sites, in Connecticut, New York, and Massachusetts. We also report current levels of abundance and parasitism of another introduced larval EAB parasitoid, Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae), released in 2015 and 2016 in these same sites. Spathius galinae was recovered at all release sites in 2018, and its density in sampled trees had increased 1.5- to 20-fold (relative to the first postrelease sample year), reaching a final density of 2.3-14.3 broods/m2 of phloem area and causing 13.1-49.2% marginal rate of parasitism at four of the six sites. In contrast, T. planipennisi was only recovered in 2018 at four of the six release sites, and both its density (0.1-2.3 broods/m2 of phloem area) and parasitism (0.1-5.6%) were lower than that of S. galinae throughout the study at the four sites where recoveries were made. Our data fill a critical gap in the development of a biocontrol-based EAB management plan to protect surviving ash trees capable of reaching maturity and producing replacement trees.


Subject(s)
Coleoptera , Fraxinus , Wasps , Animals , Asia , Connecticut , Ecosystem , Larva , Massachusetts , New England , New York , North America , Pest Control, Biological
19.
Environ Entomol ; 47(6): 1440-1450, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30188983

ABSTRACT

We describe approaches to addressing the perennial challenge of collecting a sufficient diversity of nontarget insects for host-specificity testing of candidate biocontrol agents of invasive wood-borers such as the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). Multifunnel and intercept traps, retrofitted to maintain live insects and baited with cerambycid-specific pheromone lures, were deployed in diverse forests in southeastern Massachusetts. We collected 1,288 adult beetles comprising 56 species, mostly from the subfamilies targeted by the lures (Cerambycinae and Lamiinae). The type of trap and tree species in which the trap was hung did not seem to affect the species caught. Methods used to induce egg laying and techniques to rear cerambycid larvae are described. Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is the most common Asian longhorned beetle parasitoid in China; therefore, we conducted tests to determine whether cerambycids native to North America would be at risk should this species be released. D. helophoroides attacked all six species tested: Monochamus scutellatus (Say) (Coleoptera: Cerambycidae: Lamiinae), Monochamus notatus (Drury) (Coleoptera: Cerambycidae: Lamiinae), Apriona rugicollis Chevrolat (Coleoptera: Cerambycidae: Lamiinae), Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae: Cerambycinae), Graphisurus fasciatus (DeGeer) (Coleoptera: Cerambycidae: Lamiinae), and Neoclytus acuminatus (F.) (Coleoptera: Cerambycidae: Cerambycinae). Parasitism of native cerambycids was not statistically different from parasitism of Asian longhorned beetle, except for N. acuminatus, which is a considerably smaller species than Asian longhorned beetle, and for M. notatus and M. scutellatus, which attack pine trees rather than hardwood trees like Asian longhorned beetle and the other native species tested. Our testing indicates that many native cerambycids would be vulnerable to D. helophoroides and we conclude that D. helophoroides should not be considered for release as a biocontrol agent in North America.


Subject(s)
Coleoptera , Host Specificity , Pest Control, Biological , Animals , Female , Male , Oviposition
20.
PLoS One ; 8(12): e83491, 2013.
Article in English | MEDLINE | ID: mdl-24349520

ABSTRACT

The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.


Subject(s)
Birds/physiology , Coleoptera , Food Chain , Trees , Animals , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL