Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Nucl Med Commun ; 42(9): 1024-1038, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34397988

ABSTRACT

OBJECTIVES: To construct and evaluate a 64Cu production system that minimises the amount of costly 64Ni, radionuclidic impurities and nonradioactive metal contamination and maximises radiochemical and radionuclidic purity and molar activity; and to report analytical and quality control methods that can be used within typical PET radiochemistry production facilities to measure metal ion concentrations and radiometal molar activities. METHODS: Low volume was ensured by dissolving the irradiated nickel in a low volume of hydrochloric acid (<1 mL) using the concave gold target backing as a reaction vessel in a custom-built target holder. Removal of contaminating 55Co and nonradioactive trace metals was ensured by adding an intermediate hydrochloric acid concentration step during the conventional ion-exchange elution process. The radionuclidic purity of the product was determined by half-life measurements, gamma spectroscopy and ion radiochromatography. Trace metal contamination and molar activity were determined by ion chromatography. RESULTS AND CONCLUSIONS: On a small scale, suitable for preclinical research, the process produced typically 3.2 GBq 64Cu in 2 mL solution from 9.4 ± 2.1 mg nickel-64 electroplated onto a gold target backing. The product had high molar activity (121.5 GBq/µmol), was free of trace metal contamination detectable by ion chromatography and has been used for many preclinical and clinical PET imaging applications.


Subject(s)
Cyclotrons , Positron-Emission Tomography , Copper Radioisotopes , Radiochemistry
3.
EJNMMI Phys ; 8(1): 58, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34331602

ABSTRACT

BACKGROUND: A significant proportion of the radiation dose from a PET-CT examination is dependent on the CT protocol, which should be optimised for clinical purposes. Matching protocols on different scanners within an imaging centre is important for the consistency of image quality and dose. This paper describes our experience translating low-dose CT protocols between scanner models utilising different automatic exposure control (AEC) methods and reconstruction algorithms. METHODS: The scanners investigated were a newly installed Siemens Biograph mCT PET with 64-slice SOMATOM Definition AS CT using sinogram affirmed iterative reconstruction (SAFIRE) and two GE Discovery 710 PET scanners with 128-slice Optima 660 CT using adaptive statistical reconstruction (ASiR). Following exploratory phantom work, 33 adult patients of various sizes were scanned using the Siemens scanner and matched to patients scanned using our established GE protocol to give 33 patient pairs. A comparison of volumetric CT dose index (CTDIvol) and image noise within these patient pairs informed optimisation, specifically for obese patients. Another matched patient study containing 27 patient pairs was used to confirm protocol matching. Size-specific dose estimates (SSDEs) were calculated for patients in the second cohort. With the acquisition protocol for the Siemens scanner determined, clinicians visually graded the images to identify optimal reconstruction parameters. RESULTS: In the first matched patient study, the mean percentage difference in CTDIvol for Siemens compared to GE was - 10.7% (range - 41.7 to 50.1%), and the mean percentage difference in noise measured in the patients' liver was 7.6% (range - 31.0 to 76.8%). In the second matched patient study, the mean percentage difference in CTDIvol for Siemens compared to GE was - 20.5% (range - 43.1 to 1.9%), and the mean percentage difference in noise was 19.8% (range - 27.0 to 146.8%). For these patients, the mean SSDEs for patients scanned on the Siemens and GE scanners were 3.27 (range 2.83 to 4.22) mGy and 4.09 (range 2.81 to 4.82) mGy, respectively. The analysis of the visual grading study indicated no preference for any of the SAFIRE strengths. CONCLUSIONS: Given the different implementations of acquisition parameters and reconstruction algorithms between vendors, careful consideration is required to ensure optimisation and standardisation of protocols.

4.
Eur J Hybrid Imaging ; 3(1): 15, 2019.
Article in English | MEDLINE | ID: mdl-31544170

ABSTRACT

BACKGROUND: Positron emission tomography (PET) is the non-invasive reference standard for myocardial blood flow (MBF) quantification. Hybrid PET-MR allows simultaneous PET and cardiac magnetic resonance (CMR) acquisition under identical experimental and physiological conditions. This study aimed to determine feasibility of simultaneous 13N-Ammonia PET and dynamic contrast-enhanced CMR MBF quantification in phantoms and healthy volunteers. METHODS: Images were acquired using a 3T hybrid PET-MR scanner. Phantom study: MBF was simulated at different physiological perfusion rates and a protocol for simultaneous PET-MR perfusion imaging was developed. Volunteer study: five healthy volunteers underwent adenosine stress. 13N-Ammonia and gadolinium were administered simultaneously. PET list mode data was reconstructed using ordered subset expectation maximisation. CMR MBF was quantified using Fermi function-constrained deconvolution of arterial input function and myocardial signal. PET MBF was obtained using a one-tissue compartment model and image-derived input function. RESULTS: Phantom study: PET and CMR MBF measurements demonstrated high repeatability with intraclass coefficients 0.98 and 0.99, respectively. There was high correlation between PET and CMR MBF (r = 0.98, p < 0.001) and good agreement (bias - 0.85 mL/g/min; 95% limits of agreement 0.29 to - 1.98). Volunteer study: Mean global stress MBF for CMR and PET were 2.58 ± 0.11 and 2.60 ± 0.47 mL/g/min respectively. On a per territory basis, there was moderate correlation (r = 0.63, p = 0.03) and agreement (bias - 0.34 mL/g/min; 95% limits of agreement 0.49 to - 1.18). CONCLUSION: Simultaneous MBF quantification using hybrid PET-MR imaging is feasible with high test repeatability and good to moderate agreement between PET and CMR. Future studies in coronary artery disease patients may allow cross-validation of techniques.

SELECTION OF CITATIONS
SEARCH DETAIL