Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 149(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36399062

ABSTRACT

While testing for genome instability in Drosophila as reported by unscheduled upregulation of UAS-GFP in cells that co-express GAL80 and GAL4, we noticed that, as expected, background levels were low in most developing tissues. However, GFP-positive clones were frequent in the larval brain. Most of these clones originated from central brain neural stem cells. Using imaging-based approaches and genome sequencing, we show that these unscheduled clones do not result from chromosome loss or mutations in GAL80. We have named this phenomenon 'Illuminati'. Illuminati is strongly enhanced in brat tumors and is also sensitive to environmental conditions such as food content and temperature. Illuminati is suppressed by Su(var)2-10, but it is not significantly affected by several modifiers of position effect variegation or Gal4::UAS variegation. We conclude that Illuminati identifies a previously unknown type of functional instability that may have important implications in development and disease.


Subject(s)
Drosophila Proteins , Neural Stem Cells , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Mutation/genetics , Gene Expression , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics
2.
J Cell Biol ; 219(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32328633

ABSTRACT

Ploidy variations such as genome doubling are frequent in human tumors and have been associated with genetic instability favoring tumor progression. How polyploid cells deal with increased centrosome numbers and DNA content remains unknown. Using Drosophila neuroblasts and human cancer cells to study mitotic spindle assembly in polyploid cells, we found that most polyploid cells divide in a multipolar manner. We show that even if an initial centrosome clustering step can occur at mitotic entry, the establishment of kinetochore-microtubule attachments leads to spatial chromosome configurations, whereby the final coalescence of supernumerary poles into a bipolar array is inhibited. Using in silico approaches and various spindle and DNA perturbations, we show that chromosomes act as a physical barrier blocking spindle pole coalescence and bipolarity. Importantly, microtubule stabilization suppressed multipolarity by improving both centrosome clustering and pole coalescence. This work identifies inhibitors of bipolar division in polyploid cells and provides a rationale to understand chromosome instability typical of polyploid cancer cells.


Subject(s)
Centrosome/metabolism , Polyploidy , Spindle Apparatus/metabolism , Animals , Cells, Cultured , Drosophila , Female , HEK293 Cells , Humans , Spindle Apparatus/genetics
3.
Dev Cell ; 50(1): 11-24.e10, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31130353

ABSTRACT

Defects in mitotic spindle orientation (MSO) disrupt the organization of stem cell niches impacting tissue morphogenesis and homeostasis. Mutations in centrosome genes reduce MSO fidelity, leading to tissue dysplasia and causing several diseases such as microcephaly, dwarfism, and cancer. Whether these mutations perturb spindle orientation solely by affecting astral microtubule nucleation or whether centrosome proteins have more direct functions in regulating MSO is unknown. To investigate this question, we analyzed the consequences of deregulating Plk4 (the master centriole duplication kinase) activity in Drosophila asymmetrically dividing neural stem cells. We found that Plk4 functions upstream of MSO control, orchestrating centriole symmetry breaking and consequently centrosome positioning. Mechanistically, we show that Plk4 acts through Spd2 phosphorylation, which induces centriole release from the apical cortex. Overall, this work not only reveals a role for Plk4 in regulating centrosome function but also links the centrosome biogenesis machinery with the MSO apparatus.


Subject(s)
Cdh1 Proteins/metabolism , Centrioles/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Neural Stem Cells/physiology , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/physiology , Animals , Cdh1 Proteins/genetics , Cell Cycle , Cells, Cultured , Centrosome/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Male , Neural Stem Cells/cytology , Phosphorylation , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...