Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anat Histol Embryol ; 46(5): 439-445, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28762238

ABSTRACT

The aim of this study was to describe the microstructure of hoof capsules of the buffalo. In addition, the study emphasized the morphometric aspects of the horn tubules, the Vickers nanohardness of the dorsal and abaxial walls and sole of the digits of the thoracic and pelvic limbs of the buffalo. The abaxial wall in the thoracic and pelvic digits showed larger diameter of the horn tubules when compared to all dorsal wall and sole. In addition, the abaxial wall of the thoracic digits showed larger diameter of the horn tubules when compared with the pelvic digits. According to the three-dimensional microtomography, the dorsal wall was higher in density compared with the abaxial wall. The latter exhibited an intermediate density, while the sole showed the lowest density. The Vickers nanohardness test showed that there was no difference in hardness and resistance between the experienced regions. However, the elastic modulus was greater on the transversal section of the hoof capsule. In conclusion, the results of the current study show that modern technologies such as microtomography and subsequent imaging can be used to investigate details of the basic morphology in different regions of the buffalo's hoof.


Subject(s)
Buffaloes/anatomy & histology , Hoof and Claw/ultrastructure , Animals , Dimethylamines , Elastic Modulus , Electron Microscope Tomography/veterinary , Female , Forelimb , Hardness , Hindlimb , Hoof and Claw/physiology , Imaging, Three-Dimensional/veterinary , Polymers , Styrene , Tissue Embedding/veterinary
2.
J Phys Condens Matter ; 21(26): 263002, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-21828448

ABSTRACT

Charge distribution in insulators has received considerable attention but still poses great scientific challenges, largely due to a current lack of firm knowledge about the nature and speciation of charges. Recent studies using analytical microscopies have shown that insulators contain domains with excess fixed ions forming various kinds of potential distribution patterns, which are also imaged by potential mapping using scanning electric probe microscopy. Results from the authors' laboratory show that solid insulators are seldom electroneutral, as opposed to a widespread current assumption. Excess charges can derive from a host of charging mechanisms: excess local ion concentration, radiochemical and tribochemical reactions added to the partition of hydroxonium and hydronium ions derived from atmospheric water. The last factor has been largely overlooked in the literature, but recent experimental evidence suggests that it plays a decisive role in insulator charging. Progress along this line is expected to help solve problems related to unwanted electrostatic discharges, while creating new possibilities for energy storage and handling as well as new electrostatic devices.

SELECTION OF CITATIONS
SEARCH DETAIL