Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 7(4): 524-534, 2023 04.
Article in English | MEDLINE | ID: mdl-36878986

ABSTRACT

A major challenge in ecology and evolution is to disentangle the mechanisms driving broad-scale variation in biological traits such as body size, colour, thermal physiology traits and behaviour. Climate has long been thought to drive trait evolution and abiotic filtering of trait variation in ectotherms because their thermal performance and fitness are closely related to environmental conditions. However, previous studies investigating climatic variables associated with trait variation have lacked a mechanistic description of the underpinning processes. Here, we use a mechanistic model to predict how climate affects thermal performance of ectotherms and thereby the direction and strength of the effect of selection on different functional traits. We show that climate drives macro-evolutionary patterns in body size, cold tolerance and preferred body temperatures among lizards, and that trait variation is more constrained in regions where selection is predicted to be stronger. These findings provide a mechanistic explanation for observations on how climate drives trait variation in ectotherms through its effect on thermal performance. By connecting physical, physiological and macro-evolutionary principles, the model and results provide an integrative, mechanistic framework for predicting organismal responses to present climates and climate change.


Subject(s)
Lizards , Animals , Temperature , Cold Temperature , Climate Change , Ecology
2.
Sci Adv ; 8(32): eabn2927, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35947670

ABSTRACT

Primates, represented by 521 species, are distributed across 91 countries primarily in the Neotropic, Afrotropic, and Indo-Malayan realms. Primates inhabit a wide range of habitats and play critical roles in sustaining healthy ecosystems that benefit human and nonhuman communities. Approximately 68% of primate species are threatened with extinction because of global pressures to convert their habitats for agricultural production and the extraction of natural resources. Here, we review the scientific literature and conduct a spatial analysis to assess the significance of Indigenous Peoples' lands in safeguarding primate biodiversity. We found that Indigenous Peoples' lands account for 30% of the primate range, and 71% of primate species inhabit these lands. As their range on these lands increases, primate species are less likely to be classified as threatened or have declining populations. Safeguarding Indigenous Peoples' lands, languages, and cultures represents our greatest chance to prevent the extinction of the world's primates.

3.
Proc Natl Acad Sci U S A ; 119(15): e2103745119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377801

ABSTRACT

Body size and shape fundamentally determine organismal energy requirements by modulating heat and mass exchange with the environment and the costs of locomotion, thermoregulation, and maintenance. Ecologists have long used the physical linkage between morphology and energy balance to explain why the body size and shape of many organisms vary across climatic gradients, e.g., why larger endotherms are more common in colder regions. However, few modeling exercises have aimed at investigating this link from first principles. Body size evolution in bats contrasts with the patterns observed in other endotherms, probably because physical constraints on flight limit morphological adaptations. Here, we develop a biophysical model based on heat transfer and aerodynamic principles to investigate energy constraints on morphological evolution in bats. Our biophysical model predicts that the energy costs of thermoregulation and flight, respectively, impose upper and lower limits on the relationship of wing surface area to body mass (S-MR), giving rise to an optimal S-MR at which both energy costs are minimized. A comparative analysis of 278 species of bats supports the model's prediction that S-MR evolves toward an optimal shape and that the strength of selection is higher among species experiencing greater energy demands for thermoregulation in cold climates. Our study suggests that energy costs modulate the mode of morphological evolution in bats­hence shedding light on a long-standing debate over bats' conformity to ecogeographical patterns observed in other mammals­and offers a procedure for investigating complex macroecological patterns from first principles.


Subject(s)
Body Temperature Regulation , Chiroptera , Flight, Animal , Wings, Animal , Animals , Biophysical Phenomena , Body Size , Chiroptera/anatomy & histology , Chiroptera/physiology , Climate , Flight, Animal/physiology , Wings, Animal/anatomy & histology , Wings, Animal/physiology
4.
Article in English | MEDLINE | ID: mdl-33609807

ABSTRACT

The interpretation of thermal-gradient data depends on the behavioral drives reported or assumed, and on the underlying behavioral models explaining how such drives operate. The best-known example is positive thermotaxis, a thermoregulatory behavioral drive frequently linked to a dual set-point model of thermoregulation around a target range. This behavioral drive is often assumed as dominant among 'ectotherms', including amphibians. However, we argue that, because amphibians are extremely diverse, they may exhibit alternative behavioral drives in thermal gradients, and tackle this idea from two perspectives. First, we provide a historical review of original definitions and proposed limits for inference. Second, although caveats apply, we propose that a cross-study analysis of data of temperature settings of gradients and the temperatures selected by amphibians would corroborate alternative behavioral drives, including negative thermotaxis. Therefore, we analyzed published data focusing on such relationships and show that gradient temperature settings influence the temperatures selected by amphibians, with further effects of phylogeny and ontogeny. We conclude that thermal gradient experiments are outstanding tools to investigate behavioral drives, but no given drive can be assumed a priori unless additional information about thermoregulation is available. Based on the historical debate, we propose using selected temperatures and preferred temperatures as different concepts, the former merely operational and the second explicitly linked to positive thermotaxis (and thus compatible with dual set-point thermoregulation). Under this view, thermal preferences would stand for a hypothesis of a behavioral drive (positive thermotaxis) requiring formal testing. These considerations impact the scope for inference based on thermal gradient experiments, particularly ecological modeling and emerging disease.


Subject(s)
Amphibians/physiology , Body Temperature Regulation/physiology , Animals , Temperature
5.
Sci Rep ; 11(1): 1218, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441858

ABSTRACT

The origin of morphological diversity is a critical question in evolutionary biology. Interactions between the environment and developmental processes have determining roles in morphological diversity, creating patterns through space and over time. Also, the shape of organisms tends to vary with increasing size as a result of those developmental processes, known as allometry. Several studies have demonstrated that the body sizes of anurans are associated with hydric conditions in their environments and that localities with high water stress tend to select for larger individuals. However, how environmental conditions alter those patterns of covariance between size and shape is still elusive. We used 3D geometric morphometric analyses, associated with phylogenetic comparative methods, to determine if the morphological variations and allometric patterns found in Arboranae (Anura) is linked to water conservation mechanisms. We found effects of the hydric stress on the shape of Arboranae species, favouring globular shapes. Also, the allometric patterns varied in intensity according to the water stress gradient, being particularly relevant for smaller frogs, and more intense in environments with higher water deficits. Our study provides empirical evidence that more spherical body shapes, especially among smaller species, reflect an important adaptation of anurans to water conservation in water-constrained environments.


Subject(s)
Anura/anatomy & histology , Anura/metabolism , Body Size/physiology , Water/metabolism , Animals , Biological Evolution , Phylogeny , Skull/anatomy & histology , Skull/metabolism
6.
Oecologia ; 195(1): 163-171, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33392791

ABSTRACT

The causes of the gradients in species richness remain contentious because of multiple competing hypotheses, significant knowledge gaps, and regional effects of environmental and historical factors on species pools. Coastal zones are subject to particular sets of environmental constraints, thus identifying the drivers of species richness therein should shed light on the regional gradients of species diversity. Here, we investigate the geographic patterns and drivers of plant diversity across coastal regions while allowing for pervasive sampling deficiencies. Based on 142708 records of flowering plant occurrences, we mapped species richness and estimated the level of knowledge across the coastal zone of Brazil. Based on inventory completeness, we used linear regression models to test the predictive power of environmental variables that represent different environmental hypotheses. Few cells (25%) were well-surveyed, reflecting little knowledge about the distribution and diversity of flowering plants on the highly-populated Brazilian coast. Still, we found support for the habitat heterogeneity hypothesis as the best explanation of the variation in species richness of flowering plants in this region. Soil properties and water constraints are also important factors. Although our work emphasises the paucity of information on plant diversity in tropical and human-dominated areas, we show that knowledge limitations should not curb our capability of addressing hypotheses about species diversity.


Subject(s)
Biodiversity , Magnoliopsida , Brazil , Ecosystem , Humans , Plants
7.
J Evol Biol ; 34(2): 339-351, 2021 02.
Article in English | MEDLINE | ID: mdl-33169463

ABSTRACT

Evolutionary rate explanations for latitudinal diversity gradients predict faster speciation and diversification rates in richer, older and more stable tropical regions (climatic stability hypothesis). Numerous modern lineages have emerged in high latitudes, however, suggesting that climatic oscillations can drive population divergence, at least among extratropical species (glacial refugia hypothesis). This conflicting evidence suggests that geographical patterns of evolutionary rates are more complicated than previously thought. Here, we reconstructed the complex evolutionary dynamics of a comprehensive data set of modern mammals, both terrestrial and marine. We performed global and regional regression analyses to investigate how climatic instability could have indirectly influenced contemporary diversity gradients through its effects on evolutionary rates. In particular, we explored global and regional patterns of the relationships between species richness and assemblage-level evolutionary rates and between evolutionary rates and climatic instability. We found an inverse relationship between evolutionary rates and species richness, especially in the terrestrial domain. Additionally, climatic instability was strongly associated with the highest evolutionary rates at high terrestrial latitudes, supporting the glacial refugia hypothesis there. At low latitudes, evolutionary rates were unrelated to climatic stability. The inverse relationship between evolutionary rates and the modern latitudinal diversity gradient casts doubt on the idea that higher evolutionary rates in the tropics underlie the current diversity patterns of modern mammals. Alternatively, the longer time spans for diversity to accumulate in the older and more stable tropics (and not high diversification rates) may explain the latitudinal diversity gradient.


Subject(s)
Biodiversity , Climate Change , Genetic Speciation , Mammals/genetics , Animals , Ice Cover , Phylogeny , Tropical Climate
8.
Am Nat ; 193(5): 677-687, 2019 05.
Article in English | MEDLINE | ID: mdl-31002566

ABSTRACT

Realistic projections of the biological impacts of climate change require predicting fitness responses to variations in environmental conditions. For ectotherms, this challenge requires methods to scale-up microclimatic information into actual body temperatures, Tb, while dealing with uncertainty regarding individual behaviors and physiological constraints. Here, we propose an information-theoretical model to derive microhabitat selection and Tb distributions of ectotherm populations from microclimatic data. The model infers the most probable allocation of individuals among the available microenvironments and the associated population-level Tb distribution. Using empirical Tb data of 41 species of desert lizards from three independently evolved systems-Western North America, Kalahari Desert, and Western Australia-we show that the model accurately predicts empirical Tb distributions across the three systems. Moreover, the framework naturally provides a way to quantify the importance of thermoregulation in a thermal environment and thereby a measurement for the constraint imposed by the climatic conditions. By predicting Tb distributions of ectotherm populations even without exhaustive information on the underpinning mechanisms, our approach forms a solid theoretical basis for upscaling microclimatic and physiological information into a population-level fitness trait. This scaling process is a first step to reliably project the biological impacts of climate change to broad temporal and spatial scales.


Subject(s)
Animal Distribution , Lizards , Microclimate , Models, Biological , Animals , Body Temperature , Climate Change
9.
Am Nat ; 193(1): 51-58, 2019 01.
Article in English | MEDLINE | ID: mdl-30624109

ABSTRACT

Geographical gradients of body size express climate-driven constraints on animals, but whether they exist and what causes them in ectotherms remains contentious. For amphibians, the water conservation hypothesis posits that larger bodies reduce evaporative water loss (EWL) along dehydrating gradients. To address this hypothesis mechanistically, we build on well-established biophysical equations of water exchange in anurans to propose a state-transition model that predicts an increase of either body size or resistance to EWL as alternative specialization along dehydrating gradients. The model predicts that species whose water economy is more sensitive to variation in body size than to variation in resistance to EWL should increase in size in response to increasing potential evapotranspiration (PET). To evaluate the model predictions, we combine physiological measurements of resistance to EWL with geographic data of body size for four different anuran species. Only one species, Dendropsophus minutus, was predicted to exhibit a positive body size-PET relationship. Results were as predicted for all cases, with one species-Boana faber-showing a negative relationship. Based on an empirically verified mathematical model, we show that clines of body size among anurans depend on the current values of those traits and emerge as an advantage for water conservation. Our model offers a mechanistic and compelling explanation for the cause and variation of gradients of body size in anurans.


Subject(s)
Anura/physiology , Body Size , Models, Biological , Water/physiology , Animals , Brazil , Male
10.
Science ; 361(6405): 942, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30166493
11.
PeerJ ; 6: e4869, 2018.
Article in English | MEDLINE | ID: mdl-29922508

ABSTRACT

Primates occur in 90 countries, but four-Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)-harbor 65% of the world's primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems.

12.
PLoS One ; 13(3): e0194725, 2018.
Article in English | MEDLINE | ID: mdl-29590174

ABSTRACT

Historically, studies aimed at prospecting and analyzing paleontological and neontological data to investigate species distribution have developed separately. Research at the interface between paleontology and biogeography has shown a unidirectional bias, mostly focusing on how paleontological information can aid biogeography to understand species distribution through time. However, the modern suit of techniques of ecological biogeography, particularly species distribution models (SDM), can be instrumental for paleontologists as well, improving the biogeography-paleontology interchange. In this study, we explore how to use paleoclimatic data and SDMs to support paleontological investigation regarding reduction of taxonomic uncertainty. Employing current data from two neotropical species (Lagostomus maximus and Myocastor coipus), we implemented SDMs and performed model validation comparing hindcasts with dated fossil occurrences (~14k and ~20k years back present, respectively). Finally, we employed the hindcasting process for two South American fossil records of a misidentified species of caiman (Caiman sp.) to show that C. latirostris is the most likely species identity of these fossils (among four candidate species: C. latirostris, C. yacare, C. crocodilus, and Melanosuchus niger). Possible limitations of the approach are discussed. With this strategy, we have shown that current developments in biogeography research can favour paleontology, extending the (biased) current interchange between these two scientific disciplines.


Subject(s)
Alligators and Crocodiles/classification , Alligators and Crocodiles/physiology , Animal Distribution , Fossils , Models, Biological , Paleontology , Animals , Geography , Phylogeny , Uncertainty
13.
Sci Adv ; 3(1): e1600946, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28116351

ABSTRACT

Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats-mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world's primates and the costs of their loss to ecosystem health and human society is imperative.


Subject(s)
Cercopithecidae , Ecosystem , Extinction, Biological , Animals
14.
Am J Primatol ; 79(5)2017 05.
Article in English | MEDLINE | ID: mdl-28103408

ABSTRACT

Conservation practices in the tropics often rely on the data available for a few, better-known species and the adoption of an appropriate spatial scale. By defining a set of landscape units that account for critical aspects of the focal species, the information available on these conservation targets can support regional conservation policies. Here, we define and classify adjacent landscapes, termed planning units, to orientate management decisions within and among these landscapes, which are occupied by an endangered flagship primate species (Coimbra-Filho's titi monkey, Callicebus coimbrai) from eastern Brazil. We use landscape boundaries (highways and river systems), and a high-resolution map of forest remnants to identify continuous and manageable landscapes. We employed functional landscape metrics based on the species' dispersal ability and home range size to characterize and classify these landscapes. We classified planning units by scoring them according to a suite of selected metrics through a Principal Component Analysis. We propose 31 planning units, containing one to six C. coimbrai populations, most with low values of habitat availability, functional connectivity and carrying capacity, and a high degree of degradation. Due to this poor landscape configuration, basic management practices are recommendable. However, additional aspects of the landscapes and the populations they contain (e.g., matrix type and genetic variability) should improve the scheme, which will require a closer integration of research aims with socio-political strategies. Even so, our scheme should prove useful for the combination of information on conservation targets (i.e., focal species) with management strategies on an administrative scale.


Subject(s)
Conservation of Natural Resources , Endangered Species , Pitheciidae , Animals , Brazil , Decision Making , Geographic Mapping
15.
Glob Chang Biol ; 22(6): 2003-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26663738

ABSTRACT

Land use changes have profound effects on populations of Neotropical primates, and ongoing climate change is expected to aggravate this scenario. The titi monkeys from eastern Brazil (Callicebus personatus group) have been particularly affected by this process, with four of the five species now allocated to threatened conservation status categories. Here, we estimate the changes in the distribution of these titi monkeys caused by changes in both climate and land use. We also use demographic-based, functional landscape metrics to assess the magnitude of the change in landscape conditions for the distribution predicted for each species. We built species distribution models (SDMs) based on maximum entropy for current and future conditions (2070), allowing for different global circulation models and contrasting scenarios of glasshouse gas concentrations. We refined the SDMs using a high-resolution map of habitat remnants. We then calculated habitat availability and connectivity based on home-range size and the dispersal limitations of the individual, in the context of a predicted loss of 10% of forest cover in the future. The landscape configuration is predicted to be degraded for all species, regardless of the climatic settings. This include reductions in the total cover of forest remnants, patch size and functional connectivity. As the landscape configuration should deteriorate severely in the future for all species, the prevention of further loss of populations will only be achieved through habitat restoration and reconnection to counteract the negative effects for these and several other co-occurring species.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Haplorhini , Animals , Brazil , Forecasting , Forests , Models, Biological
17.
PLoS One ; 10(7): e0133276, 2015.
Article in English | MEDLINE | ID: mdl-26186587

ABSTRACT

Many forest-dwelling bats are purported to be widespread in South America, although records are scant from the vast diagonal belt of dry ecosystems that straddles the continent, implying possible sampling deficiencies. Here, we investigate this possibility in the case of four species of bat (Centronycteris maximiliani, Lampronycteris brachyotis, Peropteryx kappleri and Trinycteris nicefori), evaluating whether their disjunct present-day distributions reflect their true zoogeographic characteristics or the subsampling of intermediate zones. We use environmental niche modelling (ENM) in an ensemble approach, combining four different modeling techniques, and using niche descriptors based on climatic and remote sensing data, to estimate the potential distribution of the four species. The models indicate that all four species have disjunct distributions in the Amazon and Atlantic forest biomes. The one possible exception is P. kappleri, which the models indicated might potentially occur in humid forest enclaves in western Brazil and eastern Bolivia. The present-day distribution of the species may date back to the Plio-Pleistocene, when the forested biomes of South America were more extensive and connected. Further studies of different chiropteran lineages may provide additional insights into the historic processes of faunal interchange between the Amazon and Atlantic forest biomes.


Subject(s)
Chiroptera/physiology , Forests , Phylogeography , Animals , Area Under Curve , Heuristics , Models, Theoretical , South America , Species Specificity
18.
J Anim Ecol ; 83(6): 1523-30, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24773500

ABSTRACT

Geographic gradients in the species richness of non-human primates have traditionally been attributed to the variation in forest productivity (related to precipitation levels), although an all-inclusive, global-scale analysis has never been conducted. We perform a more comprehensive test on the role of precipitation and biomass production and propose an alternative hypothesis - the variation in vertical structure of forest habitats as measured by forest canopy height - in determining primate species richness on a global scale. Considering the potential causal relationships among precipitation, productivity and forest structure, we arranged these variables within a path framework to assess their direct and indirect associations with the pattern of primate species richness using structural equation modelling. The analysis also accounted for the influence of spatial autocorrelation in the relationships and assessed possible historical differences among biogeographical regions. The path coefficients indicate that forest canopy height (used as a proxy for vertical forest structure) is a better predictor of primate species richness than either precipitation or productivity on both global and continental scales. The only exception was Asia, where precipitation prevailed, albeit independently from productivity or forest structure. The influence of spatially structured processes varied markedly among biogeographical regions. Our results challenge the traditional rainfall-based viewpoint in favour of forest distribution and structure as primary drivers of primate species richness, which aggregate potential effects from both climatic factors and habitat complexity. These findings may support predictions of the impact of forest removal on primate species richness.


Subject(s)
Animal Distribution , Biodiversity , Forests , Primates/physiology , Animals , Biomass , Rain , Spatial Analysis
19.
PLoS One ; 8(2): e56073, 2013.
Article in English | MEDLINE | ID: mdl-23409124

ABSTRACT

Species richness and range size are key features of biogeographic and macroecological analyses, which can yield a first assessment tool to define conservation priorities. Here we combined both features in a simultaneous analysis, based on range-diversity plots, to identify sets of rich-rare (high species richness with restricted ranges) and poor-rare cells (low species richness with restricted ranges). We applied this analysis to the anurans of South America and evaluated the representation of those sets of cells within the protected area system. South American anurans showed high species richness in the Brazilian Atlantic Forest and East Tropical Andes, while regions harboring most of the rare species were concentrated in the Andes and Atlantic Coast from North-Eastern Brazil to River Plate. Based on such patterns, we identified as rich-rare cells the Brazilian Atlantic Forest and Tropical Andes and as poor-rare cells the southern part of Andes and Uruguay. A low fraction of both sets of cells was represented within the protected area system. We show that a simultaneous consideration of species richness and rarity provides a rapid assessment of large-scale biodiversity patterns and may contribute to the definition of conservation priorities.


Subject(s)
Anura , Biodiversity , Conservation of Natural Resources , Animals , Geography , Population Density , Population Dynamics , South America
20.
Biota neotrop. (Online, Ed. port.) ; 11(2): 269-276, Apr.-June 2011. ilus, mapas, tab
Article in English | LILACS | ID: lil-596882

ABSTRACT

An inventory of the avian fauna of the Grota do Angico Natural Monument in the Caatinga of northern Sergipe, Brazil, revealed the presence of at least 140 species, including nine that are endemic to the Caatinga and seasonal forest adjacent. Despite the limited scope of the study (two expeditions in July and August, 2008), the species richness recorded at the site appeared to be typical of the region and the Caatinga biome.


No inventário da avifauna do Monumento Natural Grota de Angico na Caatinga ao norte de Sergipe, Brasil, revelou a presença de pelo menos 140 espécies, incluindo nove endêmicas da Caatinga e florestas sazonais adjacentes. Apesar do alcance limitado do estudo (duas expedições em Julho e Agosto, 2008), a riqueza de espécies registrada no sitio aparentemente pode ser típica da região e do Bioma Caatinga.

SELECTION OF CITATIONS
SEARCH DETAIL
...