Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Muscle Res Cell Motil ; 44(3): 209-215, 2023 09.
Article in English | MEDLINE | ID: mdl-37133758

ABSTRACT

The techniques of X-ray protein crystallography, NMR and high-resolution cryo-electron microscopy have all been used to determine the high-resolution structure of proteins. The most-commonly used method, however, remains X-ray crystallography but it does rely heavily on the production of suitable crystals. Indeed, the production of diffraction quality crystals remains the rate-limiting step for most protein systems. This mini-review highlights the crystallisation trials that used existing and newly developed crystallisation methods on two muscle protein targets - the actin binding domain (ABD) of α-actinin and the C0-C1 domain of human cardiac myosin binding protein C (cMyBP-C). Furthermore, using heterogenous nucleating agents the crystallisation of the C1 domain of cMyBP-C was successfully achieved in house along with preliminary actin binding studies using electron microscopy and co-sedimentation assays .


Subject(s)
Actins , Muscle Proteins , Humans , Actins/metabolism , Muscle Proteins/metabolism , Cryoelectron Microscopy , Protein Binding , Actinin/metabolism
2.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36142586

ABSTRACT

Well-diffracting protein crystals are indispensable for X-ray diffraction analysis, which is still the most powerful method for structure-function studies of biomolecules. A promising approach to growing such crystals is the use of porous nucleation-inducing materials. However, while protein crystal nucleation in pores has been thoroughly considered, little attention has been paid to the subsequent growth of crystals. Although the nucleation stage is decisive, it is the subsequent growth of crystals outside the pore that determines their diffraction quality. The molecular-scale mechanism of growth of protein crystals in and outside pores is theoretically considered. Due to the low degree of metastability, the crystals that emerge from the pores grow slowly, which is a prerequisite for better diffraction. This expectation has been corroborated by experiments carried out with several types of porous material, such as bioglass ("Naomi's Nucleant"), buckypaper, porous gold and porous silicon. Protein crystals grown with the aid of bioglass and buckypaper yield significantly better diffraction quality compared with crystals grown conventionally. In all cases, visually superior crystals are usually obtained. Our theoretical conclusion is that heterogeneous nucleation of a crystal outside the pore is an exceptional case. Rather, the protein crystals nucleating inside the pores continue growing outside them.


Subject(s)
Proteins , Silicon , Crystallization/methods , Crystallography, X-Ray , Gold , Porosity , Proteins/chemistry , Silicon/chemistry , X-Ray Diffraction
3.
IUCrJ ; 8(Pt 4): 678-683, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34258015

ABSTRACT

C-C chemokine receptor 5 (CCR5) is a major co-receptor molecule used by HIV-1 to enter cells. This led to the hypothesis that stimulating an antibody response would block HIV with minimal toxicity. Here, X-ray crystallographic studies of the anti-CCR5 antibody RoAb13 together with two peptides were undertaken: one peptide is a 31-residue peptide containing the PIYDIN sequence and the other is the PIDYIN peptide alone, where PIYDIN is part of the N-terminal region of CCR5 previously shown to be important for HIV entry. In the presence of the longer peptide (the complete N-terminal domain), difference electron density was observed at a site within a hypervariable CDR3 binding region. In the presence of the shorter core peptide PIYDIN, difference electron density is again observed at this CDR3 site, confirming consistent binding for both peptides. This may be useful in the design of a new biomimetic to stimulate an antibody response to CCR5 in order to block HIV infection.

4.
IUCrJ ; 8(Pt 2): 270-280, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33708403

ABSTRACT

The nucleation ability of pores is explained using the equilibration between the cohesive energy maintaining the integrity of a crystalline cluster and the destructive energy tending to tear it up. It is shown that to get 3D crystals it is vital to have 2D crystals nucleating in the pores first. By filling the pore orifice, the 2D crystal nuclei are more stable because their peripheries are protected from the destructive action of water molecules. Furthermore, the periphery of the 2D crystal is additionally stabilized as a result of its cohesion with the pore wall. The understanding provided by this study combining theory and experiment will facilitate the design of new nucleants.

5.
Sci Rep ; 11(1): 1737, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462295

ABSTRACT

This study concerns glulisine, a rapid-acting insulin analogue that plays a fundamental role in diabetes management. We have applied a combination of methods namely X-ray crystallography, and biophysical characterisation to provide a detailed insight into the structure and function of glulisine. X-ray data provided structural information to a resolution of 1.26 Å. Crystals belonged to the H3 space group with hexagonal (centred trigonal) cell dimensions a = b = 82.44 and c = 33.65 Å with two molecules in the asymmetric unit. A unique position of D21Glu, not present in other fast-acting analogues, pointing inwards rather than to the outside surface was observed. This reduces interactions with neighbouring molecules thereby increasing preference of the dimer form. Sedimentation velocity/equilibrium studies revealed a trinary system of dimers and hexamers/dihexamers in dynamic equilibrium. This new information may lead to better understanding of the pharmacokinetic and pharmacodynamic behaviour of glulisine which might aid in improving formulation regarding its fast-acting role and reducing side effects of this drug.


Subject(s)
Hypoglycemic Agents/chemistry , Insulin/analogs & derivatives , Biophysical Phenomena , Crystallography, X-Ray/methods , Humans , Hypoglycemic Agents/analysis , Insulin/analysis , Insulin/chemistry , Protein Multimerization , Protein Structural Elements , Structure-Activity Relationship
6.
ACS Appl Mater Interfaces ; 11(13): 12931-12940, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30860355

ABSTRACT

Macromolecular crystallization is crucial to a large number of scientific fields, including structural biology; drug design, formulation, and delivery; manufacture of biomaterials; and preparation of foodstuffs. The purpose of this study is to facilitate control of crystallization, by investigating hydrophobic interface-assisted protein crystallization both theoretically and experimentally. The application of hydrophobic liquids as nucleation promoters or suppressors has rarely been investigated, and provides an underused avenue to explore in protein crystallization. Theoretically, crystal nucleation is regarded as a two-step process, the first step being a local increase in protein concentration due to its adsorption on the hydrophobic surface. Subsequently, the protein is ordered in a crystal lattice. The energetic aspect of crystal nucleation on water/hydrophobic substance interfaces is approached by calculating the balance between the cohesive energy maintaining integrity of the two-dimensional crystal nucleus and the sum of destructive energies tending to tear up the crystal. This is achieved by comparing the number of bonds shared by the units forming the crystal and the number of unshared (dangling) bonds on the crystal surface pointing toward the solution. The same approach is extended to three-dimensional protein crystal nucleation at water/hydrophobic liquid interfaces. Experimentally, we studied protein crystallization over oils and other hydrophobic liquids (paraffin oil, FC-70 Fluorinert fluorinated oil, and three chlorinated hydrocarbons). Crystallizations of α-lactalbumin and lysozyme are compared, and additional information is acquired by studying α-crustacyanin, trypsin, an insulin analogue, and protein Lpg2936. Depending on the protein type, concentration, and the interface aging time, the proteins exhibit different crystallization propensities depending on the hydrophobic liquid used. Some hydrophobic liquids provoke an increase in the effective supersaturation, which translates to enhancement of crystal nucleation at their interface with the crystallization solution, leading to the formation of crystals.


Subject(s)
Models, Chemical , Oils/chemistry , Paraffin/chemistry , Proteins/chemistry , Crystallization , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions
7.
IUCrJ ; 5(Pt 4): 439-448, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30002845

ABSTRACT

The protein Pgp3 is implicated in the sexually transmitted disease chlamydia and comprises an extended complex arrangement of a C-terminal domain (CTD) and an N-terminal domain (NTD) linked by a triple-helix coiled coil (THCC). Here, the X-ray crystal structure of Pgp3 from an LGV1 strain is reported at the highest X-ray diffraction resolution obtained to date for the full protein. The protein was crystallized using a high concentration of potassium bromide, which resulted in a new crystal form with relatively low solvent content that diffracted to a resolution of 1.98 Å. The three-dimensional structure of this new crystal form is described and compared with those of other crystal forms, and the potassium bromide binding sites and the relevance to chlamydia isolates from around the globe are described. The crystal packing is apparently driven by the CTDs. Since the threefold axes of the THCC and NTD are not collinear with the threefold axis of a CTD, this naturally leads to disorder in the THCC and the portion of the NTD that does not directly interact with the CTD via crystal packing. The key avenue to resolving these oddities in the crystal structure analysis was a complete new analysis in space group P1 and determining the space group as P212121. This space-group assignment was that originally determined from the diffraction pattern but was perhaps complicated by translational noncrystallographic symmetry. This crystal structure of a three-domain multi-macromolecular complex with two misaligned threefold axes was a unique challenge and has not been encountered before. It is suggested that a specific intermolecular interaction, possibly of functional significance in receptor binding in chlamydia, might allow the design of a new chemotherapeutic agent against chlamydia.

8.
Sci Rep ; 6: 20053, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26843366

ABSTRACT

Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry , Proteins/chemistry , Soot/chemistry , Catalase/chemistry , Crystallization , Microscopy, Electron, Transmission , Muramidase/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Oxidation-Reduction , Porosity , Surface Properties , Trypsin/chemistry
9.
Chem Sci ; 7(4): 2916-2923, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-30090285

ABSTRACT

A range of carbon nanomaterials, with varying dimensionality, were dispersed by a non-damaging and versatile chemical reduction route, and subsequently grafted by reaction with methoxy polyethylene glycol (mPEG) monobromides. The use of carbon nanomaterials with different geometries provides both a systematic comparison of surface modification chemistry and the opportunity to study factors affecting specific applications. Multi-walled carbon nanotubes, single-walled carbon nanotubes, graphite nanoplatelets, exfoliated few layer graphite and carbon black were functionalized with mPEG-Br, yielding grafting ratios relative to the nanocarbon framework between ca. 7 and 135 wt%; the products were characterised by Raman spectroscopy, TGA-MS, and electron microscopy. The functionalized materials were tested as nucleants by subjecting them to rigorous protein crystallization studies. Sparsely functionalized flat sheet geometries proved exceptionally effective at inducing crystallization of six proteins. This new class of nucleant, based on PEG grafted graphene-related materials, can be widely applied to promote the growth of 3D crystals suitable for X-ray crystallography. The association of the protein ferritin with functionalized exfoliated few layer graphite was directly visualized by transmission electron microscopy, illustrating the formation of ordered clusters of protein molecules critical to successful nucleation.

10.
PLoS One ; 10(6): e0128381, 2015.
Article in English | MEDLINE | ID: mdl-26030924

ABSTRACT

The CCR5 receptor plays a role in several key physiological and pathological processes and is an important therapeutic target. Inhibition of the CCR5 axis by passive or active immunisation offers one very selective strategy for intervention. In this study we define a new linear epitope within the extracellular domain of CCR5 recognised by two independently produced monoclonal antibodies. A short peptide encoding the linear epitope can induce antibodies which recognise the intact receptor when administered colinear with a tetanus toxoid helper T cell epitope. The monoclonal antibody RoAb 13 is shown to bind to both cells and peptide with moderate to high affinity (6x10^8 and 1.2x107 M-1 respectively), and binding to the peptide is enhanced by sulfation of tyrosines at positions 10 and 14. RoAb13, which has previously been shown to block HIV infection, also blocks migration of monocytes in response to CCR5 binding chemokines and to inflammatory macrophage conditioned medium. A Fab fragment of RoAb13 has been crystallised and a structure of the antibody is reported to 2.1 angstrom resolution.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/chemistry , Epitopes/immunology , Receptors, CCR5/chemistry , Receptors, CCR5/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , CHO Cells , Chemotaxis , Cricetinae , Cricetulus , Crystallography, X-Ray , Female , Humans , Immunization , Ligands , Mice , Molecular Sequence Data , Protein Structure, Tertiary , Species Specificity
11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 534-40, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25760603

ABSTRACT

The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as `smart materials') for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of success when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.


Subject(s)
Polymers/chemistry , Crystallography, X-Ray/methods
12.
Nat Protoc ; 9(7): 1621-33, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24922271

ABSTRACT

Solving the structure of proteins is pivotal to achieving success in rational drug design and in other biotechnological endeavors. The most powerful method for determining the structure of proteins is X-ray crystallography, which relies on the availability of high-quality crystals. However, obtaining such crystals is a major hurdle. Nucleation is the crucial prerequisite step, which requires overcoming an energy barrier. The presence in a protein solution of a nucleant, a solid or a semiliquid substance that facilitates overcoming that barrier allows crystals to grow under ideal conditions, paving the way for the formation of high-quality crystals. The use of nucleants provides a unique means for optimizing the diffraction quality of crystals, as well as for discovering new crystallization conditions. We present a protocol for controlling the nucleation of protein crystals that is applicable to a wide variety of nucleation-inducing substances. Setting up crystallization trials using these nucleating agents takes an additional few seconds compared with conventional setup, and it can accelerate crystallization, which typically takes several days to months.


Subject(s)
Crystallization/methods , Proteins/chemistry , Ceramics/chemistry , Filtration , Phase Transition , Porosity , Protein Stability , X-Ray Diffraction
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 261-78, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24531461

ABSTRACT

Geobacillus stearothermophilus T6 is a thermophilic, Gram-positive soil bacterium that possesses an extensive and highly regulated hemicellulolytic system, allowing the bacterium to efficiently degrade high-molecular-weight polysaccharides such as xylan, arabinan and galactan. As part of the xylan-degradation system, the bacterium uses a number of side-chain-cleaving enzymes, one of which is Axe2, a 219-amino-acid intracellular serine acetylxylan esterase that removes acetyl side groups from xylooligosaccharides. Bioinformatic analyses suggest that Axe2 belongs to the lipase GDSL family and represents a new family of carbohydrate esterases. In the current study, the detailed three-dimensional structure of Axe2 is reported, as determined by X-ray crystallography. The structure of the selenomethionine derivative Axe2-Se was initially determined by single-wavelength anomalous diffraction techniques at 1.70 Šresolution and was used for the structure determination of wild-type Axe2 (Axe2-WT) and the catalytic mutant Axe2-S15A at 1.85 and 1.90 Šresolution, respectively. These structures demonstrate that the three-dimensional structure of the Axe2 monomer generally corresponds to the SGNH hydrolase fold, consisting of five central parallel ß-sheets flanked by two layers of helices (eight α-helices and five 310-helices). The catalytic triad residues, Ser15, His194 and Asp191, are lined up along a substrate channel situated on the concave surface of the monomer. Interestingly, the Axe2 monomers are assembled as a `doughnut-shaped' homo-octamer, presenting a unique quaternary structure built of two staggered tetrameric rings. The eight active sites are organized in four closely situated pairs, which face the relatively wide internal cavity. The biological relevance of this octameric structure is supported by independent results obtained from gel-filtration, TEM and SAXS experiments. These data and their comparison to the structural data of related hydrolases are used for a more general discussion focusing on the structure-function relationships of enzymes of this category.


Subject(s)
Acetylesterase/chemistry , Bacterial Proteins/chemistry , Geobacillus stearothermophilus/chemistry , Glucuronates/chemistry , Oligosaccharides/chemistry , Acetylesterase/genetics , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Geobacillus stearothermophilus/enzymology , Kinetics , Models, Molecular , Mutation , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Static Electricity , Structure-Activity Relationship , Substrate Specificity
14.
Article in English | MEDLINE | ID: mdl-24100561

ABSTRACT

Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a multi-enzyme system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of endo-acting extracellular enzymes that break down the high-molecular-weight polysaccharides into decorated oligosaccharides. These oligosaccharides enter the cell and are further hydrolyzed into sugar monomers by a set of intracellular glycoside hydrolases. One of these intracellular degrading enzymes is GanB, a glycoside hydrolase family 42 ß-galactosidase capable of hydrolyzing short ß-1,4-galactosaccharides to galactose. GanB and related enzymes therefore play an important part in the hemicellulolytic utilization system of many microorganisms which use plant biomass for growth. The interest in the biochemical characterization and structural analysis of these enzymes stems from their potential biotechnological applications. GanB from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory as part of its complete structure-function study. The best crystals obtained for this enzyme belong to the primitive orthorhombic space group P212121, with average crystallographic unit-cell parameters of a=71.84, b=181.35, c=196.57 Å. Full diffraction data sets to 2.45 and 2.50 Šresolution have been collected for both the wild-type enzyme and its E323A nucleophile catalytic mutant, respectively, as measured from flash-cooled crystals at 100 K using synchrotron radiation. These data are currently being used for the full three-dimensional crystal structure determination of GanB.


Subject(s)
Geobacillus stearothermophilus/enzymology , Intracellular Space/enzymology , beta-Galactosidase/chemistry , Crystallization , Crystallography, X-Ray , Mutant Proteins/chemistry , Synchrotrons
15.
Article in English | MEDLINE | ID: mdl-23545652

ABSTRACT

Acetylxylan esterases are part of the hemi-cellulolytic system of many microorganisms which utilize plant biomass for growth. Xylans, which are polymeric sugars that constitute a significant part of the plant biomass, are usually substituted with acetyl side groups attached at position 2 or 3 of the xylose backbone units. Acetylxylan esterases hydrolyse the ester linkages of the xylan acetyl groups and thus improve the ability of main-chain hydrolysing enzymes to break down the sugar backbone units. As such, these enzymes play an important part in the hemi-cellulolytic utilization system of many microorganisms that use plant biomass for growth. Interest in the biochemical characterization and structural analysis of these enzymes stems from their numerous potential biotechnological applications. An acetylxylan esterase (Axe2) of this type from Geobacillus stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized. One of the crystal forms obtained (RB1) belonged to the tetragonal space group I422, with unit-cell parameters a = b = 110.2, c = 213.1 Å. A full diffraction data set was collected to 1.85 Å resolution from flash-cooled crystals of the wild-type enzyme at 100 K using synchrotron radiation. A selenomethionine derivative of Axe2 has also been prepared and crystallized for single-wavelength anomalous diffraction experiments. The crystals of the selenomethionine-derivatized Axe2 appeared to be isomorphous to those of the wild-type enzyme and enabled the measurement of a full 1.85 Å resolution diffraction data set at the selenium absorption edge and a full 1.70 Å resolution data set at a remote wavelength. These data are currently being used for three-dimensional structure determination of the Axe2 protein.


Subject(s)
Acetylesterase/chemistry , Geobacillus stearothermophilus/enzymology , Crystallization , Crystallography, X-Ray
16.
Biomacromolecules ; 13(12): 3959-65, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23106501

ABSTRACT

We have characterized the imprinting capability of a family of acrylamide polymer-based molecularly imprinted polymers (MIPs) for bovine hemoglobin (BHb) and trypsin (Tryp) using spectrophotometric and quartz crystal microbalance (QCM) sensor techniques. Bulk gel characterization on acrylamide (AA), N-hydroxymethylacrylamide (NHMA), and N-isopropylacrylamide (NiPAM) gave varied selectivities when compared with nonimprinted polymers. We have also harnessed the ability of the MIPs to facilitate protein crystallization as a means of evaluating their selectivity for cognate and noncognate proteins. Crystallization trials indicated improved crystal formation in the order NiPAM

Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Hydrogels/chemistry , Molecular Imprinting , Polymers/chemistry , Acrylamides/chemistry , Acrylamides/metabolism , Animals , Cattle , Crystallization/methods , Hemoglobins/metabolism , Protein Conformation , Quartz Crystal Microbalance Techniques/methods , Trypsin/metabolism
17.
Anal Chem ; 83(20): 7881-7, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21894980

ABSTRACT

The use of dual polarization interferometry (DPI) as a tool for probing the different possible outcomes of protein crystallization experiments is described. DPI is a surface analytical technique used for the characterization of structure and interactions of molecular layers on an optical waveguide surface for a wide range of applications, including protein-protein interactions and conformational changes. The application of this technique provides a "signature" of crystallization events, thus predicting if there will be protein crystal formation, amorphous precipitate, or clear solution. The technique was demonstrated on a number of model proteins, and it also produced meaningful results in the case of two problematic target proteins. DPI in conjunction with a dialysis setup, allows changes in the protein solution above the waveguide surface to be monitored simultaneously with continuous control of its precipitant content. DPI has the potential to be used as a powerful method for discovering crystallization conditions, for obtaining information on the crystallization process, and as an aid in crystal optimization. It has also provided what is, to the best of our knowledge, the most direct observation to date of salting-in behavior in a protein-salt solution.


Subject(s)
Interferometry , Proteins/chemistry , Animals , Catalase/chemistry , Crystallization , Dynamins/chemistry , Endo-1,4-beta Xylanases/chemistry , Lasers, Gas , Light , Muramidase/chemistry , Plant Proteins/chemistry , Rats
18.
Proc Natl Acad Sci U S A ; 108(27): 11081-6, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21690356

ABSTRACT

We present a previously undescribed initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals that are essential for determining high-resolution 3D structures of proteins. MIPs, also referred to as "smart materials," are made to contain cavities capable of rebinding protein; thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8-10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size compatibility being a likely criterion for efficacy. Atomic force microscopy (AFM) measurements demonstrated specific affinity between the MIP cavities and a protein-functionalized AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation-inducing substrates (nucleants) by harnessing the proteins themselves as templates.


Subject(s)
Molecular Imprinting/methods , Polymers/chemistry , Proteins/isolation & purification , Animals , Crystallization , Humans , Hydrogels , Microscopy, Atomic Force , Proteins/chemistry
19.
Anal Chem ; 81(10): 3769-75, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19388631

ABSTRACT

Protein crystallization is of strategic and commercial relevance in the post-genomic era because of its pivotal role in structural proteomics projects. Although protein structures are crucial for understanding the function of proteins and to the success of rational drug design and other biotechnology applications, obtaining high quality crystals is a major bottleneck to progress. The major means of obtaining crystals is by massive-scale screening of a target protein solution with numerous crystallizing agents. However, when crystals appear in these screens, one cannot easily know if they are crystals of protein, salt, or any other molecule that happens to be present in the trials. We present here a method based on Attenuated Total Reflection (ATR)-FT-IR imaging that reliably identifies protein crystals through a combination of chemical specificity and the visualizing capability of this approach, thus solving a major hurdle in protein crystallization. ATR-FT-IR imaging was successfully applied to study the crystallization of thaumatin and lysozyme in a high-throughput manner, simultaneously from six different solutions. This approach is fast as it studies protein crystallization in situ and provides an opportunity to examine many different samples under a range of conditions.


Subject(s)
Crystallography/methods , Proteins/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Antigens, CD/chemistry , Crystallization , Muramidase/chemistry , Plant Proteins/chemistry , Tetraspanin 28
20.
ACS Appl Mater Interfaces ; 1(6): 1203-10, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20355914

ABSTRACT

We report on the first use of carbon-nanotube-based films to produce crystals of proteins. The crystals nucleate on the surface of the film. The difficulty of crystallizing proteins is a major bottleneck in the determination of the structure and function of biological molecules. The crystallization of two model proteins and two medically relevant proteins was studied. Quantitative data on the crystallization times of the model protein lysozyme are also presented. Two types of nanotube films, one made with the surfactant Triton X-100 (TX-100) and one with gelatin, were tested. Both induce nucleation of the crystal phase at supersaturations at which the protein solution would otherwise remain clear; however, the gelatin-based film induced nucleation down to much lower supersaturations for the two model proteins with which it was used. It appears that the interactions of gelatin with the protein molecules are particularly favorable to nucleation. Crystals of the C1 domain of the human cardiac myosin-binding protein-C that diffracted to a resolution of 1.6 A were obtained on the TX-100 film. This is far superior to the best crystals obtained using standard techniques, which only diffracted to 3.0 A. Thus, both of our nanotube-based films are very promising candidates for future work on crystallizing difficult-to-crystallize target proteins.


Subject(s)
Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Proteins/chemistry , Proteins/ultrastructure , Adsorption , Crystallization/methods , Materials Testing , Particle Size , Protein Binding , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...