Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 665: 10-18, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38513404

ABSTRACT

Biochars, i.e. porous carbons obtained by pyrolysis of biomass, can act as electrocatalysts for oxygen evolution and oxygen reduction reaction. In the present work, two biochars have been prepared by using materials of completely different biomass origin: olive-tree twigs and spent malt rootlets (brewery wastes). Both biomass species were subjected to pyrolysis under limited oxygen supply and then they were activated by mixing with KOH and pyrolysis again. The obtained biochars were characterized by several techniques in order to determine their structural characteristics and the composition of their active components. Despite their different origin, the two biochars demonstrated similar structural and compositional characteristics thus highlighting the importance of the pyrolysis and activation procedure. Both biochars were used as electrocatalysts in the operation of rechargeable Zn-air batteries, where they also demonstrated similar electrocatalytic capacities with only a small advantage gained by olive-tree-twigs biochar. Compared to bare nanoparticulate carbon (carbon black), both biochars demonstrated a marked advantage towards oxygen evolution reaction.

2.
RSC Adv ; 8(51): 29062-29070, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-35547969

ABSTRACT

Surface Enhanced Raman Spectroscopy (SERS) belongs to the techniques of ultra-sensitive chemical analysis and involves both identification and quantification of molecular species. Despite the fact that theoretically derived enhancement factors imply that even single molecules may be identified, which in some cases has indeed been experimentally observed, the application of this specific technique as an analytical tool is still an open field of research due to the need for reproducible, stable and simple to prepare SERS active substrates. The current work attempts to contribute to the already established knowledge on the substrates of metallic nanostructured films by a systematic study on the optimal conditions required for the detection of a specifically selected (model) material, the antitumor drug mitoxantrone (MTX). Au thin film deposition on Si substrates, by sputtering followed by solid state thermal dewetting is a facile and reproducible way to prepare Au nanoparticles with the desired particle size distribution. This offers control over their optical - plasmon resonance - properties that can be efficiently tailored to the prerequisites of the resonance Raman conditions, associated to the species under inspection, which is a supplement to the overall enhancement scattering factor. Furthermore, this work attempts to confirm the quantification capabilities of SERS, via the aforementioned substrates, in view of extending SERS applications to food safety, biosensors etc.

SELECTION OF CITATIONS
SEARCH DETAIL
...