Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 105(3-2): 035101, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35428137

ABSTRACT

We study the role of phase change and thermal noise in particle transport in turbulent flows. We employ a toy model to extract the main physics: Condensing droplets are modelled as heavy particles which grow in size, the ambient flow is modelled as a two-dimensional Taylor-Green flow consisting of an array of vortices delineated by separatrices, and thermal noise are modelled as uncorrelated Gaussian white noise. In general, heavy inertial particles are centrifuged out of regions of high vorticity and into regions of high strain. In cellular flows, we find, in agreement with earlier results, that droplets with Stokes numbers smaller than a critical value, St

2.
Soft Matter ; 17(6): 1497-1504, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33355592

ABSTRACT

We study the wetting of a thin elastic filament floating on a fluid surface by a droplet of another, immiscible fluid. This quasi-2D experimental system is the lower-dimensional counterpart of the wetting and wrapping of a droplet by an elastic sheet. The simplicity of this system allows us to study the phenomenology of partial wetting and wrapping of the droplet by measuring angles of contact as a function of the elasticity of the filament, the applied tension and the curvature of the droplet. We find that a purely geometric theory gives a good description of the mechanical equilibria in the system. The estimates of applied tension and tension in the filament obey an elastic version of the Young-Laplace-Dupré relation. However, curvatures close to the contact line are not captured by the geometric theory, possibly because of 3D effects at the contact line. We also find that when a highly-bendable filament completely wraps the droplet, there is continuity of curvature at the droplet-filament interface, leading to seamless wrapping as observed in a 3D droplet.

3.
Sci Rep ; 10(1): 5582, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221314

ABSTRACT

The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic 'Martin curve' flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of the particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.

4.
Proc Math Phys Eng Sci ; 476(2233): 20190550, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32082060

ABSTRACT

Small variations introduced in shear flows are known to affect stability dramatically. Rotation of the flow system is one example, where the critical Reynolds number for exponential instabilities falls steeply with a small increase in rotation rate. We ask whether there is a fundamental reason for this sensitivity to rotation. We answer in the affirmative, showing that it is the non-normality of the stability operator in the absence of rotation which triggers this sensitivity. We treat the flow in the presence of rotation as a perturbation on the non-rotating case, and show that the rotating case is a special element of the pseudospectrum of the non-rotating case. Thus, while the non-rotating flow is always modally stable to streamwise-independent perturbations, rotating flows with the smallest rotation are unstable at zero streamwise wavenumber, with the spanwise wavenumbers close to that of disturbances with the highest transient growth in the non-rotating case. The instability critical rotation number scales inversely as the square of the Reynolds number, which we demonstrate is the same as the scaling obeyed by the minimum perturbation amplitude in non-rotating shear flow needed for the pseudospectrum to cross the neutral line. Plane Poiseuille flow and plane Couette flow are shown to behave similarly in this context.

5.
Trans Indian Natl Acad Eng ; 5(2): 255-261, 2020.
Article in English | MEDLINE | ID: mdl-38624374

ABSTRACT

The transmission dynamics of highly contagious respiratory diseases like COVID-19 (through coughing/sneezing) is an open problem in the epidemiological studies of such diseases (Bourouiba, JAMA. https://doi.org/10.1001/jama.2020.4756. 2020). The problem is basically the fluid dynamics of a transient turbulent jet/puff with buoyancy, laden with evaporating droplets carrying the pathogen. A turbulent flow of this nature does not lend itself to reliable estimates through modeling approaches such as RANS (Reynolds-Averaged Navier-Stokes equations) or other droplet-based models. However, direct numerical simulations (DNS) of what may be called "cough/sneeze flows" can play an important role in understanding the spread of the contagion. The objective of this work is to develop a DNS code for studying cough/sneeze flows by a suitable combination of the DNS codes available with the authors (developed to study cumulus cloud flows including thermodynamics of phase change and the dynamics of small water droplets) and to generate useful data on these flows. Recent results from the cumulus cloud simulations are included to highlight the effect of turbulent entrainment (which is one of the key processes in determining the spread of the expiratory flows) on the distribution of liquid water content in a moist plume. Furthermore, preliminary results on the temperature distribution in a "dry cough" (i.e., without inclusion of liquid droplets) are reported to illustrate the large spatial extent and time duration over which the cough flow can persist after the coughing has stopped. We believe that simulations of this kind can help to devise more accurate guidelines for separation distances between neighbors in a group, design better masks, and minimize the spread of respiratory diseases of the COVID-19 type.

6.
Phys Rev E ; 100(4-1): 043110, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31771019

ABSTRACT

We investigate the Lagrangian statistics of three-dimensional rotating turbulent flows through direct numerical simulations. We find that the emergence of coherent vortical structures because of the Coriolis force leads to a suppression of the "flight-crash" events reported by Xu et al. [Proc. Natl. Acad. Sci. (USA) 111, 7558 (2014)PNASA60027-842410.1073/pnas.1321682111]. We perform systematic studies to trace the origins of this suppression in the emergent geometry of the flow and show why such a Lagrangian measure of irreversibility may fail in the presence of rotation.

7.
Phys Rev E ; 99(6-1): 063107, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330678

ABSTRACT

We investigate the role of intense vortical structures, similar to those in a turbulent flow, in enhancing collisions (and coalescences) which lead to the formation of large aggregates in particle-laden flows. By using a Burgers vortex model, we show, in particular, that vortex stretching significantly enhances sharp inhomogeneities in spatial particle densities, related to the rapid ejection of particles from intense vortices. Furthermore our work shows how such spatial clustering leads to an enhancement of collision rates and extreme statistics of collisional velocities. We also study the role of polydisperse suspensions in this enhancement. Our work uncovers an important principle, which, if valid for realistic turbulent flows, may be a factor in how small nuclei water droplets in warm clouds can aggregate to sizes large enough to trigger rain.

8.
Phys Rev E ; 94(1-1): 013105, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27575215

ABSTRACT

The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more orderly progression into a single vortex. Results from linear stability analysis agree with the nonlinear simulations, and predict the frequencies of the most unstable modes better than they predict the growth rates. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.

9.
Soft Matter ; 12(37): 7772-81, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27526347

ABSTRACT

We study the flow of a pressure-driven foam through a straight channel using numerical simulations, and examine the effects of a tuneable attractive potential between bubbles. We show that the effect of an attractive potential is to introduce a regime of jamming and stick-slip flow in a channel, and report on the behaviour resulting from varying the strength of the attraction. We find that there is a force threshold below which the flow jams, and upon further increasing the driving force, a crossover from intermittent (stick-slip) to smooth flow is observed. This threshold force below which the foam jams increases linearly with the strength of the attractive potential. By examining the spectra of energy fluctuations, we show that stick-slip flow is characterized by low frequency rearrangements and strongly local behaviour, whereas steady flow shows a broad spectrum of energy drop events and collective behaviour. Our work suggests that the stick-slip and the jamming regimes occur due to the increased stabilization of contact networks by the attractive potential - as the strength of attraction is increased, bubbles are increasingly trapped within networks, and there is a decrease in the number of contact changes.

10.
Soft Matter ; 12(28): 6073-8, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27374245

ABSTRACT

The rate of spreading or retraction of a drop on a flat substrate is determined through a balance of surface tension and hydrodynamic flow. While asymptotic regimes are known, no general rate equation has hitherto been available. Here, we revisit this classic problem, in a regime governed by capillary and viscous forces, by performing an exhaustive numerical study of drop evolution as a function of the contact angle with the substrate. Our study reveals a universal evolution of the drop radius parameterised only by the substrate wettability. Two limits of this evolution recover the familiar exponential and algebraic regimes. Our results show quantitative comparison with the evolution derived from lubrication theory, indicating that dissipation at the contact line is the key determinant in drop evolution. Our work, both numerical and theoretical, provides a foundation for studying the full temporal dynamics of droplet evolution under the influence of external fields and thermal fluctuations, which are of importance in nanofluidics.

11.
Eur Phys J E Soft Matter ; 38(5): 130, 2015 May.
Article in English | MEDLINE | ID: mdl-25998171

ABSTRACT

We solve the two-dimensional, planar Navier-Stokes equations to simulate a laminar, standing hydraulic jump using a Volume-of-Fluid method. The geometry downstream of the jump has been designed to be similar to experimental conditions by including a pit at the edge of the platform over which liquid film flows. We obtain jumps with and without separation. Increasing the inlet Froude number pushes the jump downstream and makes the slope of the jump weaker, consistent with experimental observations of circular jumps, and decreasing the Reynolds number brings the jump upstream while making it steeper. We study the effect of the length of the domain and that of a downstream obstacle on the structure and location of the jump. The transient flow which leads to a final steady jump is described for the first time to our knowledge. In the moderate Reynolds number regime, we obtain steady undular jumps with a separated bubble underneath the first few undulations. Interestingly, surface tension leads to shortening of wavelength of these undulations. We show that the undulations can be explained using the inviscid theory of Benjamin and Lighthill (Proc. R. Soc. London, Ser. A, 1954). We hope this new finding will motivate experimental verification.

12.
Article in English | MEDLINE | ID: mdl-25679549

ABSTRACT

Domain growth in spinodal decomposition is usually described by a single time-evolving length scale. We show that the evolution of morphology of domains is nonmonotonic. The domains elongate rapidly at first and then, with the help of hydrodynamics, return to a more circular shape. The initial elongation phase does not alter with hydrodynamics. A small deviation from critical composition changes the morphology dramatically.

13.
Nat Commun ; 6: 6268, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25687557

ABSTRACT

The beauty and complexity of the shapes and dynamics of bubbles rising in liquid have fascinated scientists for centuries. Here we perform simulations on an initially spherical bubble starting from rest. We report that the dynamics is fully three-dimensional, and provide a broad canvas of behaviour patterns. Our phase plot in the Galilei-Eötvös plane shows five distinct regimes with sharply defined boundaries. Two symmetry-loss regimes are found: one with minor asymmetry restricted to a flapping skirt; and another with marked shape evolution. A perfect correlation between large shape asymmetry and path instability is established. In regimes corresponding to peripheral breakup and toroid formation, the dynamics is unsteady. A new kind of breakup, into a bulb-shaped bubble and a few satellite drops is found at low Morton numbers. The findings are of fundamental and practical relevance. It is hoped that experimenters will be motivated to check our predictions.

14.
Sci Rep ; 4: 4771, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24759766

ABSTRACT

Is a settling drop equivalent to a rising bubble? The answer is known to be in general a no, but we show that when the density of the drop is less than 1.2 times that of the surrounding fluid, an equivalent bubble can be designed for small inertia and large surface tension. Hadamard's exact solution is shown to be better for this than making the Boussinesq approximation. Scaling relationships and numerical simulations show a bubble-drop equivalence for moderate inertia and surface tension, so long as the density ratio of the drop to its surroundings is close to unity. When this ratio is far from unity, the drop and the bubble are very different. We show that this is due to the tendency for vorticity to be concentrated in the lighter fluid, i.e. within the bubble but outside the drop. As the Galilei and Bond numbers are increased, a bubble displays underdamped shape oscillations, whereas beyond critical values of these numbers, over-damped behavior resulting in break-up takes place. The different circulation patterns result in thin and cup-like drops but bubbles thick at their base. These shapes are then prone to break-up at the sides and centre, respectively.

15.
Langmuir ; 29(10): 3339-46, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23414059

ABSTRACT

We study the motion of a two-dimensional droplet on an inclined surface, under the action of gravity, using a diffuse interface model which allows for arbitrary equilibrium contact angles. The kinematics of motion is analyzed by decomposing the gradient of the velocity inside the droplet into a shear and a residual flow. This decomposition helps in distinguishing sliding versus rolling motion of the drop. Our detailed study confirms intuition, in that rolling motion dominates as the droplet shape approaches a circle, and the viscosity contrast between the droplet and the ambient fluid becomes large. As a consequence of kinematics, the amount of rotation in a general droplet shape follows a universal curve characterized by geometry, and independent of Bond number, surface inclination and equilibrium contact angle, but determined by the slip length and viscosity contrast. Our results open the way toward a rational design of droplet-surface properties, both when rolling motion is desirable (as in self-cleaning hydrophobic droplets) and when it must be prevented (as in insecticide sprays on leaves).

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046304, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22181258

ABSTRACT

The shape that a liquid drop will assume when resting statically on a solid surface inclined to the horizontal is studied here in two dimensions. Earlier experimental and numerical studies yield multiple solutions primarily because of inherent differences in surface characteristics. On a solid surface capable of sustaining any amount of hysteresis, we obtain the global, and hence unique, minimum energy shape as a function of equilibrium contact angle, drop volume, and plate inclination. It is shown, in the energy minimization procedure, how the potential energy of this system is dependent on the basis chosen to measure it from, and two realistic bases, front-pinned and back-pinned, are chosen for consideration. This is at variance with previous numerical investigations where both ends of the contact line are pinned. It is found that the free end always assumes Young's equilibrium angle. Using this, simple equations that describe the angles and the maximum volume are then derived. The range of parameters where static drops are possible is presented. We introduce a detailed force balance for this problem and study the role of the wall in supporting the drop. We show that a portion of the wall reaction can oppose gravity while the other portion aids it. This determines the maximum drop volume that can be supported at a given plate inclination. This maximum volume is the least for a vertical wall, and is higher for all other wall inclinations. This study can be extended to three-dimensional drops in a straightforward manner and, even without this, lends itself to experimental verification of several of its predictions.

17.
J Chem Phys ; 133(14): 144707, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20950030

ABSTRACT

Analytical and numerical studies are carried out on the shapes of two-dimensional and axisymmetric pendant drops hanging under gravity from a solid surface. Drop shapes with both pinned and equilibrium contact angles are obtained naturally from a single boundary condition in the analytical energy optimization procedure. The numerical procedure also yields optimum energy shapes, satisfying Young's equation without the explicit imposition of a boundary condition at the plate. It is shown analytically that a static pendant two-dimensional drop can never be longer than 3.42 times the capillary length. A related finding is that a range of existing solutions for long two-dimensional drops correspond to unphysical drop shapes. Therefore, two-dimensional drops of small volume display only one static solution. In contrast, it is known that axisymmetric drops can display multiple solutions for a given volume. We demonstrate numerically that there is no limit to the height of multiple-lobed Kelvin drops, but the total volume is finite, with the volume of successive lobes forming a convergent series. The stability of such drops is in question, though. Drops of small volume can attain large heights. A bifurcation is found within the one-parameter space of Laplacian shapes, with a range of longer drops displaying a minimum in energy in the investigated space. Axisymmetric Kelvin drops exhibit an infinite number of bifurcations.

18.
Phys Rev Lett ; 101(9): 094503, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18851618

ABSTRACT

We ask what determines the (small) angle of turbulent jets. To answer this question we first construct a deterministic vortex-street model representing the large-scale structure in a self-similar plane turbulent jet. Without adjustable parameters the model reproduces the mean velocity profiles and the transverse positions of the large-scale structures, including their mean sweeping velocities, in a quantitative agreement with experiments. Nevertheless, the exact self-similar arrangement of the vortices (or any other deterministic model) necessarily leads to a collapse of the jet angle. The observed (small) angle results from a competition between vortex sweeping tending to strongly collapse the jet and randomness in the vortex structure, with the latter resulting in a weak spreading of the jet.

19.
Phys Rev Lett ; 98(16): 164502, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17501422

ABSTRACT

Hydraulic jumps created by gravity are seen everyday in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, this leads to solid femtoliter cups of gold, silver, copper, niobium, and tin.

20.
J Phys Chem B ; 110(46): 22975-8, 2006 Nov 23.
Article in English | MEDLINE | ID: mdl-17107130

ABSTRACT

Cuplike structures of Au, Ag, Cu, Zn, Nb, Cd, Al, In, and Sn in the size range of 300 nm to a few micrometers with an internal volume of a few femtoliters have been produced by the laser ablation of metal targets in a vacuum, by optimizing, in each case, the laser fluence and the substrate temperature. The metal droplets impinging on the substrate seem to undergo a hydraulic jump driven by the surface tension forces before solidifying into cups. The cups are robust and can be functionalized with biomarkers, filled with nanoparticle sols, oxidized to crucibles, or detached from the substrate without causing any deformation. We envisage their potential applications as femtoliter metal containers.

SELECTION OF CITATIONS
SEARCH DETAIL