Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(2)2023 02 04.
Article in English | MEDLINE | ID: mdl-36830664

ABSTRACT

Quorum-sensing peptides (QSPs) are bacterial peptides traditionally considered only as inter-bacterial communication molecules. Recently, their involvement in microbiome-host interactions influencing host diseases such as cancer and sarcopenia were explored. However, it is still unknown to what extent these peptides have the potential to modulate the immune system. In this proof-of-concept study, we screened 89 QSPs for their potential to induce IL-6 and TNFα in murine splenocytes and J774 macrophages. Confirmatory experiments on the positive screening-hits were conducted using murine splenocytes and human PBMCs of different ages. Finally, to investigate the biological relevance of immunomodulatory QSPs, we analysed plasma in a human cohort for the presence of the immunomodulatory QSP Q010. To do this, we used a newly developed UHPLC-MS/MS method. Our findings indicated that specific QSPs activate immune cells in vitro, with Q007, Q010, Q017 and Q212 being the top four screening hits. Q007 and Q010 were affirmed in subsequent confirmatory experiments using murine splenocytes and human PBMCs. Finally, Q010 was detected in human plasma, demonstrating for the first time the presence of an immunomodulatory QSP in human circulation. In conclusion, our data are the first evidence indicating the potential of biologically relevant quorum-sensing peptides to modulate the immune system.


Subject(s)
Peptides , Tandem Mass Spectrometry , Mice , Humans , Animals , Peptides/chemistry , Bacteria , Quorum Sensing , Immunologic Factors
2.
Sci Rep ; 11(1): 645, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436827

ABSTRACT

Calcium (Ca2+) signalling plays an indispensable role in dental pulp and dentin regeneration, but the Ca2+ responses of human dental pulp stem cells (hDPSCs) stimulated with tricalcium silicate-based (TCS-based) dental biomaterials remains largely unexplored. The objective of the present study was to identify and correlate extracellular Ca2+ concentration, intracellular Ca2+ dynamics, pH, cytotoxicity, gene expression and mineralization ability of human dental pulp stem cells (hDPSCs) stimulated with two different TCS-based biomaterials: Biodentine and ProRoot white MTA. The hDPSCs were exposed to the biomaterials, brought in contact with the overlaying medium, with subsequent measurements of extracellular Ca2+ and pH, and intracellular Ca2+ changes. Messenger RNA expression (BGLAP, TGF-ß, MMP1 and BMP2), cytotoxicity (MTT and TUNEL) and mineralization potential (Alizarin red and Von Kossa staining) were then evaluated. Biodentine released significantly more Ca2+ in the α-MEM medium than ProRoot WMTA but this had no cytotoxic impact on hDPSCs. The larger Biodentine-linked Ca2+ release resulted in altered intracellular Ca2+ dynamics, which attained a higher maximum amplitude, faster rise time and increased area under the curve of the Ca2+ changes compared to ProRoot WMTA. Experiments with intracellular Ca2+ chelation, demonstrated that the biomaterial-triggered Ca2+ dynamics affected stem cell-related gene expression, cellular differentiation and mineralization potential. In conclusion, biomaterial-specific Ca2+ dynamics in hDPSCs determine differentiation and mineralization outcomes, with increased Ca2+ dynamics enhancing mineralization.


Subject(s)
Calcium Compounds/pharmacology , Calcium/metabolism , Dental Cements/pharmacology , Dental Pulp/cytology , Osteogenesis , Silicates/pharmacology , Stem Cells/cytology , Biocompatible Materials/pharmacology , Cell Differentiation , Cells, Cultured , Dental Pulp/drug effects , Dental Pulp/metabolism , Humans , Stem Cells/drug effects , Stem Cells/metabolism
3.
Clin Oral Investig ; 25(5): 3181-3195, 2021 May.
Article in English | MEDLINE | ID: mdl-33108483

ABSTRACT

OBJECTIVES: Tricalcium silicate (TCS)-based biomaterials induce differentiation of human dental pulp cells (hDPCs) into odontoblasts/osteoblasts, which is regulated by the interplay between various intracellular pathways and their resultant secretome. The aim of this study was to compare the transcriptome-wide effects by next-generation RNA sequencing of custom-prepared hDPCs stimulated with TCS-based biomaterials: ProRoot white MTA (WMTA) (Dentsply, Tulsa; Tulsa, OK) and Biodentine (Septodont, Saint Maur des Fosses, France). METHODS: Self-isolated hDPCs were seeded in a 6-well plate at a density of 5 × 105 cells per well. ProRoot white MTA and Biodentine were then placed in transwell inserts with a pore size of 0.4 µm and inserted in the well plate. RNA sequencing was performed after 3 and 7 days treatment. For post-validation, RT-PCR analyses were done on some of the RNA samples used for RNA sequencing. RESULTS: Our RNA sequencing results for the first time identified 7533 differentially expressed genes (DEGs) between different treatments and the number of DEGs in Biodentine was higher than ProRoot WMTA at both 3 and 7 days. Despite their differential gene expression, both the TCS-based biomaterial treatments showed gene expressions mainly involved in odontoblast differentiation, angiogenesis, neurogenesis, dentinogenesis, and tooth mineralization. CONCLUSIONS: The results of the present study illustrate that several important signalling pathways are induced by hDPCs stimulated with TCS-based biomaterials. CLINICAL RELEVANCE: The differential expression of the genes associated with odontogenesis, angiogenesis, neurogenesis, dentinogenesis, and mineralization may affect the prognosis of teeth treated with Biodentine or ProRoot white MTA.


Subject(s)
Aluminum Compounds , Transcriptome , Aluminum Compounds/pharmacology , Calcium Compounds/pharmacology , Dental Cements/pharmacology , Dental Pulp , Drug Combinations , France , Humans , Oxides/pharmacology , Sequence Analysis, RNA , Silicates/pharmacology
4.
EMBO Rep ; 21(6): e48927, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32363653

ABSTRACT

CD1d-restricted invariant natural killer T (iNKT) cells constitute a common glycolipid-reactive innate-like T-cell subset with a broad impact on innate and adaptive immunity. While several microbial glycolipids are known to activate iNKT cells, the cellular mechanisms leading to endogenous CD1d-dependent glycolipid responses remain largely unclear. Here, we show that endoplasmic reticulum (ER) stress in APCs is a potent inducer of CD1d-dependent iNKT cell autoreactivity. This pathway relies on the presence of two transducers of the unfolded protein response: inositol-requiring enzyme-1a (IRE1α) and protein kinase R-like ER kinase (PERK). Surprisingly, the neutral but not the polar lipids generated within APCs undergoing ER stress are capable of activating iNKT cells. These data reveal that ER stress is an important mechanism to elicit endogenous CD1d-restricted iNKT cell responses through induction of distinct classes of neutral lipids.


Subject(s)
Natural Killer T-Cells , Antigen-Presenting Cells , Antigens, CD1d/genetics , Endoribonucleases , Lipids , Lymphocyte Activation , Protein Serine-Threonine Kinases
5.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165646, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31870715

ABSTRACT

Skeletal muscle makes up the largest part of human body mass and a good maintenance of this organ is essential for general health. In accordance, muscle wasting, a frequent phenomenon in many diseases, is associated with functional decline and a decrease in quality of life. Unfortunately, due to a lack of knowledge of the underlying pathophysiology, no targeted therapies exist today to encounter muscle wasting. Recent studies suggest a role for the gut microbiome in muscle wasting, without the mediators of this gut-muscle axis being identified. Here we evaluated the possible effects of 75 quorum sensing molecules (QSM), traditionally only seen as intra-bacterial communication molecules, on C2C12 muscle cells, studying viability, differentiation, inflammation, mitochondrial changes and protein degradation as biological outcomes. The responses were evaluated using different approaches: median absolute deviation, quartiles, strictly standardized mean difference and robust strictly standardized mean difference. This study resulted in 30 QSM, with effects observed on C2C12 cells. Known producers of the 27 peptide QSM belong to species of the genus Staphylococcus, Streptococcus, Enterococcus, Bacillus, Lactobacillus and Escherichia, while the 3 non-peptide QSM are produced by a broad range of Gram-positive and Gram-negative bacteria. Altogether, these proof-of-concept findings provide the first evidence that QSM produced by microbiota play a role in the gut-muscle axis, opening new perspectives for diagnostic and therapeutic targets in muscle wasting diseases.


Subject(s)
Bacteria/metabolism , Microbiota/physiology , Muscle Cells/metabolism , Quorum Sensing/physiology , Animals , Cell Differentiation/physiology , Cell Line , Cell Survival/physiology , Gastrointestinal Microbiome/physiology , Inflammation/metabolism , Mice , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Quality of Life
6.
Biochim Biophys Acta Mol Basis Dis ; : 165585, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31678164

ABSTRACT

This article has been withdrawn at the request of the author for administrative reasons. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

7.
Nat Commun ; 9(1): 5340, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559399

ABSTRACT

Activated invariant natural killer T (iNKT) cells rapidly produce large amounts of cytokines, but how cytokine mRNAs are induced, stabilized and mobilized following iNKT activation is still unclear. Here we show that an endoplasmic reticulum stress sensor, inositol-requiring enzyme 1α (IRE1α), links key cellular processes required for iNKT cell effector functions in specific iNKT subsets, in which TCR-dependent activation of IRE1α is associated with downstream activation of p38 MAPK and the stabilization of preformed cytokine mRNAs. Importantly, genetic deletion of IRE1α in iNKT cells reduces cytokine production and protects mice from oxazolone colitis. We therefore propose that an IRE1α-dependent signaling cascade couples constitutive cytokine mRNA expression to the rapid induction of cytokine secretion and effector functions in activated iNKT cells.


Subject(s)
Cytokines/genetics , Endoplasmic Reticulum Stress/physiology , Endoribonucleases/genetics , Lymphocyte Activation/immunology , Natural Killer T-Cells/immunology , Protein Serine-Threonine Kinases/genetics , Animals , Cells, Cultured , Colitis/genetics , Gene Deletion , Mice , Mice, Knockout , Oxazolone/toxicity , RNA, Messenger/genetics , Signal Transduction , Unfolded Protein Response/genetics , Unfolded Protein Response/physiology , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Front Immunol ; 9: 1489, 2018.
Article in English | MEDLINE | ID: mdl-30008717

ABSTRACT

Innate-like T cells such as invariant natural killer T (iNKT) cells and mucosal-associated T (MAIT) cells, characterized by a semi-invariant T cell receptor and restriction toward MHC-like molecules (CD1 and MR1 respectively), are a unique unconventional immune subset acting at the interface of innate and adaptive immunity. Highly represented at barrier sites and capable of rapidly producing substantial amounts of cytokines, they serve a pivotal role as first-line responders against microbial infections. In contrast, it was demonstrated that innate-like T cells can be skewed toward a predominant pro-inflammatory state and are consequently involved in a number of autoimmune and inflammatory diseases like inflammatory bowel diseases and rheumatic disorders, such as spondyloarthritis (SpA) and rheumatoid arthritis. Interestingly, there is link between gut and joint disease as they often co-incide and share certain aspects of the pathogenesis such as established genetic risk factors, a critical role for pro-inflammatory cytokines, such as TNF-α, IL-23, and IL-17 and therapeutic susceptibility. In this regard dysregulated IL-23/IL-17 responses appear to be crucial in both debilitating pathologies and innate-like T cells likely act as key player. In this review, we will explore the remarkable features of iNKT cells and MAIT cells, and discuss their contribution to immunity and combined gut-joint disease.

9.
Immunity ; 48(1): 45-58.e6, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29287995

ABSTRACT

Interleukin-23 (IL-23), an IL-12 family cytokine, plays pivotal roles in pro-inflammatory T helper 17 cell responses linked to autoimmune and inflammatory diseases. Despite intense therapeutic targeting, structural and mechanistic insights into receptor complexes mediated by IL-23, and by IL-12 family members in general, have remained elusive. We determined a crystal structure of human IL-23 in complex with its cognate receptor, IL-23R, and revealed that IL-23R bound to IL-23 exclusively via its N-terminal immunoglobulin domain. The structural and functional hotspot of this interaction partially restructured the helical IL-23p19 subunit of IL-23 and restrained its IL-12p40 subunit to cooperatively bind the shared receptor IL-12Rß1 with high affinity. Together with structural insights from the interaction of IL-23 with the inhibitory antibody briakinumab and by leveraging additional IL-23:antibody complexes, we propose a mechanistic paradigm for IL-23 and IL-12 whereby cognate receptor binding to the helical cytokine subunits primes recruitment of the shared receptors via the IL-12p40 subunit.


Subject(s)
Interleukin-12 Receptor beta 1 Subunit/metabolism , Interleukin-23/metabolism , Receptors, Interleukin/metabolism , Animals , Calorimetry/methods , Cell Line , Humans , Interferometry/methods , Interleukin-12 Subunit p40/metabolism , Male , Mice , Protein Binding/physiology , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology
10.
Ann Rheum Dis ; 76(3): 585-592, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27551052

ABSTRACT

OBJECTIVES: A20 is an important endogenous regulator of inflammation. Single nucleotide polymorphisms in A20 have been associated with various immune-mediated inflammatory diseases, and cell-specific deletion of A20 results in diverse inflammatory phenotypes. Our goal was to delineate the underlying mechanisms of joint inflammation in myeloid-specific A20-deficient mice (A20myelKO mice). METHODS: Inflammation in A20myelKO mice was assessed in a time-dependent manner. Western blot analysis and quantitative PCR analysis were performed on bone marrow-derived macrophages from A20myelKO and littermate control mice to study the effect of A20 on STAT1/STAT3 expression and STAT1/STAT3-dependent gene transcription in myeloid cells. The in vivo role of Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signalling in the development of enthesitis in A20myelKO mice was assessed following administration of a JAK inhibitor versus placebo control. RESULTS: Enthesitis was found to be an early inflammatory lesion in A20myelKO mice. A20 negatively modulated STAT1-dependent, but generally not STAT3-dependent gene transcription in myeloid cells by suppressing STAT1 but not STAT3 expression, both in unstimulated conditions and after interferon-γ or interleukin-6 stimulation. The increase in STAT1 gene transcription in the absence of A20 was shown to be JAK-STAT-dependent. Moreover, JAK inhibition in vivo resulted in significant reduction of enthesitis, both clinically and histopathologically. CONCLUSIONS: Our data reveal an important and novel interplay between myeloid cells and tissue resident cells at entheseal sites that is regulated by A20. In the absence of A20, STAT1 but not STAT3 expression is enhanced leading to STAT1-dependent inflammation. Therefore, A20 acts as a novel endogenous regulator of STAT1 that prevents onset of enthesitis.


Subject(s)
Enthesopathy/genetics , Enthesopathy/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Cells, Cultured , Enthesopathy/etiology , Enthesopathy/pathology , Inflammation/complications , Inflammation/genetics , Inflammation/metabolism , Interferon-gamma/pharmacology , Interleukin-6/pharmacology , Janus Kinases/metabolism , Macrophages , Mice , Mice, Knockout , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
11.
J Exp Med ; 213(10): 1973-81, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27551157

ABSTRACT

Natural killer T (NKT) cells are innate lymphocytes that differentiate into NKT1, NKT2, and NKT17 sublineages during development. However, the signaling events that control NKT sublineage specification and differentiation remain poorly understood. Here, we demonstrate that the ubiquitin-modifying enzyme TNFAIP3/A20, an upstream regulator of T cell receptor (TCR) signaling in T cells, is an essential cell-intrinsic regulator of NKT differentiation. A20 is differentially expressed during NKT cell development, regulates NKT cell maturation, and specifically controls the differentiation and survival of NKT1 and NKT2, but not NKT17, sublineages. Remaining A20-deficient NKT1 and NKT2 thymocytes are hyperactivated in vivo and secrete elevated levels of Th1 and Th2 cytokines after TCR ligation in vitro. Defective NKT development was restored by compound deficiency of MALT1, a key downstream component of TCR signaling in T cells. These findings therefore show that negative regulation of TCR signaling during NKT development controls the differentiation and survival of NKT1 and NKT2 cells.


Subject(s)
Cell Lineage , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Ubiquitin/metabolism , Animals , CD4 Antigens/metabolism , Caspases/deficiency , Caspases/metabolism , Cell Survival , Integrases/metabolism , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Transgenic , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Neoplasm Proteins/deficiency , Neoplasm Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Up-Regulation/genetics
12.
Int J Pharm ; 509(1-2): 149-158, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27231122

ABSTRACT

We have developed active targeting liposomes to deliver anticancer agents to ASGPR which will contribute to effective treatment of hepatocellular carcinoma. Active targeting is achieved through polymeric ligands on the liposome surface. The liposomes were prepared using reverse phase evaporation method and doxorubicin hydrocholoride, a model drug, was loaded using the ammonium sulphate gradient method. Liposomes loaded with DOX were found to have a particle size of 200nm with more than 90% entrapment efficiency. Systems were observed to release the drug in a sustained manner in acidic pH in vitro. Liposomes containing targeting ligands possessed greater and selective toxicity to ASGPR positive HepG2 cell lines due to specific ligand receptor interaction. Bio-distribution studies revealed that liposomes were concentrated in the liver even after 3h of administration, thus providing conclusive evidence of targeting potential for formulated nanosystems. Tumor regression studies indicated greater tumor suppression with targeted liposomes thereby establishing superiority of the liposomal system. In this work, we used a novel methodology to guide the determination of the optimal composition of the targeting liposomes: molecular dynamics (MD) simulation that aided our understanding of the behaviour of the ligand within the bilayer. This can be seen as a demonstration of the utility of this methodology as a rational design tool for active targeting liposome formulation.


Subject(s)
Antineoplastic Agents/administration & dosage , Asialoglycoprotein Receptor/metabolism , Carcinoma, Hepatocellular/drug therapy , Cholesterol/chemistry , Galactans/chemistry , Liposomes/chemistry , Liver Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/metabolism , Drug Delivery Systems/methods , Hep G2 Cells , Humans , Liver/drug effects , Liver/metabolism , Liver Neoplasms/metabolism , Particle Size , Polyethylene Glycols/chemistry , Tissue Distribution
13.
J Vis Exp ; (105): e53256, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26555769

ABSTRACT

The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells. Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5(+)) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5(+) fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 10(8) iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice.


Subject(s)
Flow Cytometry/methods , Natural Killer T-Cells/cytology , Spleen/cytology , Animals , Cytokines/immunology , Female , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell/immunology , Spleen/immunology
14.
J Immunol ; 193(12): 5960-72, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25381434

ABSTRACT

The regulatory role of the thymic microenvironment during trafficking and differentiation of the invariant NKT (iNKT) cell lineage remains poorly understood. In this study, we show that fractalkine receptor expression marks emigrating subpopulations of the NKT1, NKT2, and NKT17 sublineages in the thymus and peripheral organs of naive mice. Moreover, NKT1 sublineage cells can be subdivided into two subsets, namely NKT1(a) and NKT1(b), which exhibit distinct developmental and tissue-specific distribution profiles. More specifically, development and trafficking of the NKT1(a) subset are selectively dependent upon lymphotoxin (LT)α1ß2-LTß receptor-dependent differentiation of thymic stroma, whereas the NKT1(b), NKT2, and NKT17 sublineages are not. Furthermore, we identify a potential cellular source for LTα1ß2 during thymic organogenesis, marked by expression of IL-7Rα, which promotes differentiation of the NKT1(a) subset in a noncell-autonomous manner. Collectively, we propose a mechanism by which thymic differentiation and retention of the NKT1 sublineage are developmentally coupled to LTα1ß2-LTß receptor-dependent thymic organogenesis.


Subject(s)
Cell Movement , Cellular Microenvironment , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism , Animals , CX3C Chemokine Receptor 1 , Cell Differentiation/genetics , Cell Differentiation/immunology , Cluster Analysis , Female , Gene Expression , Gene Expression Profiling , Immunohistochemistry , Immunophenotyping , Interleukin-7 Receptor alpha Subunit/genetics , Interleukin-7 Receptor alpha Subunit/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphotoxin alpha1, beta2 Heterotrimer/metabolism , Lymphotoxin beta Receptor/metabolism , Lymphotoxin-beta/deficiency , Male , Mice , Mice, Transgenic , Phenotype , Pregnancy , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Receptors, HIV/genetics , Receptors, HIV/metabolism , Signal Transduction , Thymocytes/immunology , Thymocytes/metabolism
15.
Int J Pharm ; 477(1-2): 128-39, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25311181

ABSTRACT

Present study investigates the potential of chemically modified (Shah et al., 2013) palmitoylated arabinogalactan (PAG) in guiding liposomal delivery system and targeting asialoglycoprotein receptors (ASGPR) which are expressed in hepatocellular carcinoma (HCC). PAG was incorporated in liposomes during preparation and doxorubicin hydrochloride was actively loaded in preformed liposomes with and without PAG. The liposomal systems with or without PAG were evaluated for in vitro release, in vitro cytotoxicity, in vitro cell uptake on ASGPR(+) cells, in vivo pharmacokinetic study, in vivo biodistribution study, and in vivo efficacy study in immunocompromised mice. The particle size for all the liposomal systems was below 200 nm with a negative zeta potential. Doxorubicin loaded PAG liposomes released significantly higher amount of doxorubicin at pH 5.5 as compared to pH 7.4, providing advantage for targeted tumor therapy. Doxorubicin in PAG liposomes showed superior cytotoxicity on ASGPR(+) HepG2 cells as compared to ASGPR(-), MCF7, A549, and HT29 cells. Superior uptake of doxorubicin loaded PAG liposomes as compared to doxorubicin loaded conventional liposomes was evident in confocal microscopy studies. Higher AUC in pharmacokinetic study and higher deposition in liver was observed for PAG liposomes compared to conventional liposomes. Significantly higher tumor suppression was noted in immunocompromised mice for mice treated with PAG liposomes as compared to the conventional liposomes. Targeting ability and superior activity of PAG liposomes is established pre-clinically suggesting potential of targeted delivery system for improved treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Doxorubicin/administration & dosage , Galactans/chemistry , Liver Neoplasms/drug therapy , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Carcinoma, Hepatocellular/pathology , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Liberation , Female , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Ligands , Liposomes , Liver Neoplasms/pathology , Male , Mice , Mice, SCID , Microscopy, Confocal , Particle Size , Rats , Rats, Sprague-Dawley , Tissue Distribution
16.
J Mater Chem B ; 2(6): 644-650, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-32261282

ABSTRACT

This study evaluates the efficiency of novel non-viral vectors consisting of super paramagnetic iron oxide nanoparticles functionalized with the chemically tunable cationic polymer for in vitro gene magnetofection. The cationic polymer, poly(vinyl pyridinium alkyl halide), with a reactive alkoxysilyl group at one terminal of the polymer (VPCmn, m = length of the side chain and n = polymerization degree), was grafted onto the surface of iron oxide nanoparticles through a silane coupling reaction. The VPCmn grafted-magnetic nanoparticles (Mag-VPCmn) were quaternized with various alkyl halides such as methyl iodide (m = 1), ethyl bromide (m = 2), butyl bromide (m = 4), hexyl bromide (m = 6) and octyl bromide (m = 8). Mag-VPCmn quaternized with a shorter alkyl chain (m = 1, 2, 4 and 6) were water dispersible, but that quaternized with a longer alkyl chain (m = 8) was precipitated in water. The surface of water dispersible Mag-VPCmns was positively charged in pH ranging from 2 to 11, and is stable for more than one month in this pH range. The complexes of Mag-VPCmns and nucleoside molecules with various N/P ratios were evaluated using gel electrophoresis, surface charge (ζ-potential) measurement, and particle size measurement. In vitro transfection experiments were assayed in human embryonic kidney 293 cells (HEK293 cells) using pmaxGFP plasmid as a reporter gene. Gene expression was found to be strongly influenced by the length of the side alkyl chains. Higher transfection efficiencies were observed with longer alkyl chains (C6 > C4 > C2 ≥ C1), indicating that hydrophobic side chains were effective in increasing the transfection efficiency.

17.
Int J Pharm ; 446(1-2): 87-99, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23415875

ABSTRACT

In this study, a combination of magnetic nanoparticles (MNPs) together with cationic lipid N,N-di-n-hexadecyl-N,N-dihydroxyethylammonium chloride formulated with colipid cholesterol, upon magnetofection, enhanced DNA uptake into human glioblastoma-astrocytoma, epithelial-like cell line U-87 MG, hepatocellular carcinoma Hep G2, cervical cancer HeLa and breast cancer MDA-MB-231 cells. Having confirmed this, we monitored uptake of plasmid DNA mediated by ternary magnetoplexes by fluorescence microscopy, flow cytometry and reporter gene expression assays in the presence and absence of a magnetic field. Our observations clearly indicate enhanced transfection efficiency in vitro, upon magnetofection, in the presence of serum as seen from ß-Gal reporter gene expression. The observed activity in serum suggests the suitability of MNPs for in vivo applications. Further, we measured the transverse relaxation time (T2) and obtained T2-weighted MRI images of treated U-87 MG cells. T2 determined for MNP-VP-Me22 and MNP-VP-Et22 corresponds to 22.6±0.8 ms and 36.0±2.1 ms, respectively, as compared to 47±1.7 ms for control, suggesting their applicability in molecular imaging. Our results collectively highlight the potential of lipid-based approach to augment magnetic-field guided-gene delivery using MNPs and additionally towards developing intracellular molecular probes for magnetic resonance imaging.


Subject(s)
DNA/administration & dosage , Ethanolamines/chemistry , Nanoparticles/chemistry , Quaternary Ammonium Compounds/chemistry , Transfection/methods , Animals , Cell Line, Tumor , DNA/chemistry , Humans , Liposomes , Magnetic Phenomena , Mice
18.
Biomaterials ; 33(8): 2570-82, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22192536

ABSTRACT

Cell-penetrating peptide (CPP)-based delivery systems represent a strategy that facilitates DNA import efficiently and non-specifically into cells. To introduce specificity, we devised an approach that combines a cell-penetrating peptide, TAT-Mu (TM) and a targeting ligand, an HER2 antibody mimetic-affibody (AF), designated as TMAF to deliver nucleic acids into the cells. In this study, we synthesized TMAF protein and its truncated versions, i.e. MAF and AF, by expressing the corresponding plasmids in Escherichia coli BL21(DE3)pLysS cells. Purified TMAF binds DNA efficiently and protects plasmid DNA from DNaseI action. Transfection of HER2+ breast cancer cell lines MDA-MB-453, SK-OV-3, SK-BR-3 and an ovarian cancer cell line with plasmid DNA pCMVß-gal, resulted in enhanced ß-galactosidase activity when compared to control MDA-MB-231 cells. Maximal activity observed in MDA-MB-453 cells at DNA:TMAF:Protamine sulphate (PS) corresponding to 1:8:2 charge ratios. Further the observed gene transfection was resistant to serum, sensitive to the presence of free AF and non-toxic. Variants of TMAF although non-toxic, were far less efficient indicating the effective role of the TAT and Mu domains. The observed DNA uptake and reporter gene activity mediated by TMAFin vitro could be linked with the cell-surface density of tyrosine kinase receptor HER2 (ErbB2) levels estimated by Western blot. Further, we confirmed the efficacy of DNA transfer by TMAF protein in xenograft mouse models using MDA-MB-453 cells. Expression of ß-galactosidase as the reporter gene, upon intratumoral injection of DNA, in complex with TMAF, lends credence to specific DNA import and distribution within the tumor tissue that was attributed to high HER2 receptor overexpression in MDA-MB-453 cells. Through delivery of anti-TF hshRNA: TMAF: PS complex, we demonstrate specific knockdown of tissue factor (TF) in MDA-MB-453 cells in vitro. Most importantly, in a xenograft mouse model, we observe significant (P<0.05) and specific reduction of tumor volume when anti-TF hshRNA: TMAF: PS complex was injected intratumorally. Collectively our data indicate that AF-based chimeric peptides with nucleic acid binding properties may provide an effective tumor specific strategy to deliver therapeutic nucleic acids.


Subject(s)
Biocompatible Materials/pharmacology , Cell-Penetrating Peptides/pharmacology , Molecular Targeted Therapy/methods , Receptor, ErbB-2/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , DNA/metabolism , Deoxyribonuclease I/metabolism , Flow Cytometry , Gene Knockdown Techniques , Gene Transfer Techniques , Humans , Ligands , Mice , Mice, SCID , Plasmids/metabolism , Protamines , Protein Stability/drug effects , RNA, Small Interfering/metabolism , Receptor, ErbB-2/metabolism , Serum/metabolism , Thromboplastin/metabolism , Transfection
19.
Bioconjug Chem ; 22(11): 2244-54, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-21985175

ABSTRACT

In the design of new cationic lipids for gene transfection, the chemistry of linkers is widely investigated from the viewpoint of biodegradation and less from their contribution to the biophysical properties. We synthesized two dodecyl lipids with glutamide as the backbone and two lysines to provide the cationic headgroup. Lipid 1 differs from Lipid 2 by the presence of an amide linkage instead of an ester linkage that characterizes Lipid 2. The transfection efficiency of lipoplexes with cholesterol as colipid was found to be very high with Lipid 1 on Chinese Hamster Ovary (CHO) and HepG2 cell lines, whereas Lipid 2 has shown partial transfection efficiency on HepG2 cells. Lipid 1 was found to be stable in the presence of serum when tested in HepG2 and CHO cells albeit with lower activity. Fluorescence-based dye-binding and agarose gel-based assays indicated that Lipid 1 binds to DNA more efficiently than Lipid 2 at charge ratios of >1:1. The uptake of oligonucleotides with Lipid 1 was higher than Lipid 2 as revealed by confocal microscopy. Transmission electron microscopy (TEM) images reveal distinct formation of liposomes and lipoplexes with Lipid 1 but fragmented and unordered structures with Lipid 2. Fusion of Lipids 1 and 2 with anionic vesicles, with composition similar to plasma membrane, suggests that fusion of Lipid 2 was very rapid and unlike a fusion event, whereas the fusion kinetics of Lipid 1 vesicles was more defined. Differential scanning calorimetry (DSC) revealed a high T(m) for Lipid 1 (65.4 °C) while Lipid 2 had a T(m) of 23.5 °C. Surface area-pressure isotherms of Lipid 1 was less compressible compared to Lipid 2. However, microviscosity measured using 1,6-diphenyl-1,3,5-hexatriene (DPH) revealed identical values for vesicles made with either of the lipids. The presence of amide linker apparently resulted in stable vesicle formation, higher melting temperature, and low compressibility, while retaining the membrane fluid properties suggesting that the intermolecular hydrogen bonds of Lipid 1 yielded stable lipoplexes of high transfection efficiency.


Subject(s)
Cations/chemistry , Lipids/chemistry , Oligopeptides/chemistry , Transfection/methods , Animals , Anisotropy , CHO Cells , Calorimetry, Differential Scanning , Cricetinae , Cricetulus , Gene Transfer Techniques , Hep G2 Cells , Humans , Membrane Fusion , Microscopy, Electron, Transmission , Molecular Structure , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...