Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413766

ABSTRACT

BACKGROUND: Acquired neonatal intestinal diseases have an array of overlapping presentations and are often labeled under the dichotomous classification of necrotizing enterocolitis (which is poorly defined) or spontaneous intestinal perforation, hindering more precise diagnosis and research. The objective of this study was to take a fresh look at neonatal intestinal disease classification using unsupervised machine learning. METHODS: Patients admitted to the University of Florida Shands Neonatal Intensive Care Unit January 2013-September 2019 diagnosed with an intestinal injury, or had imaging findings of portal venous gas, pneumatosis, abdominal free air, or had an abdominal drain placed or exploratory laparotomy during admission were included. Congenital gastroschisis, omphalocele, intestinal atresia, malrotation were excluded. Data was collected via retrospective chart review with subsequent hierarchal, unsupervised clustering analysis. RESULTS: Five clusters of intestinal injury were identified: Cluster 1 deemed the "Low Mortality" cluster, Cluster 2 deemed the "Mature with Inflammation" cluster, Cluster 3 deemed the "Immature with High Mortality" cluster, Cluster 4 deemed the "Late Injury at Full Feeds" cluster, and Cluster 5 deemed the "Late Injury with High Rate of Intestinal Necrosis" cluster. CONCLUSION: Unsupervised machine learning can be used to cluster acquired neonatal intestinal injuries. Future study with larger multicenter datasets is needed to further refine and classify types of intestinal diseases. IMPACT: Unsupervised machine learning can be used to cluster types of acquired neonatal intestinal injury. Five major clusters of acquired neonatal intestinal injury are described, each with unique features. The clusters herein described deserve future, multicenter study to determine more specific early biomarkers and tailored therapeutic interventions to improve outcomes of often devastating neonatal acquired intestinal injuries.

3.
J Perinatol ; 43(6): 775-781, 2023 06.
Article in English | MEDLINE | ID: mdl-36631564

ABSTRACT

OBJECTIVE: Assess presence, durability, and neutralization capacity of SARS-CoV-2-specific antibodies in breastfeeding infants' stool, mother's plasma and milk following maternal vaccination. DESIGN: Thirty-seven mothers and 25 infants were enrolled between December 2020 and November 2021 for this prospective observational study. All mothers were vaccinated during lactation except three, which were vaccinated during pregnancy. Milk, maternal plasma, and infants' stool was collected pre-vaccination and at periods up to 6 months following COVID-19 vaccine series initiation/completion. SARS-CoV-2 antibody levels and their neutralization capacities were assessed. RESULTS: SARS-CoV-2-specific IgA and IgG levels were higher in infant stool post-maternal vaccination amongst milk-fed compared to controls. Maternal SARS-CoV-2-specific IgA and IgG concentrations decreased over 6 months post-vaccination but remained higher than pre-vaccination levels. We observed improved neutralization capacity in milk and plasma after COVID-19 vaccination. CONCLUSIONS: The presence of SARS-CoV-2-specific antibodies in infant stool following maternal vaccination offers further evidence of the lasting transfer of these antibodies through breastfeeding.


Subject(s)
COVID-19 , Milk, Human , Female , Pregnancy , Infant , Humans , Breast Feeding , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Mothers , Vaccination , Immunoglobulin A , Immunoglobulin G
4.
Res Sq ; 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36032985

ABSTRACT

Objective Assess the presence, durability, and neutralization capacity of SARS-CoV-2-specific antibodies in breastfeeding infants' stools, mother's plasma, and human milk following maternal vaccination. Design Thirty-seven mothers and 25 infants were enrolled between December 2020 and November 2021 for this prospective observational study. Human milk, maternal plasma, and infants' stools were collected pre-vaccination and at periods up to 6 months following COVID-19 vaccine series initiation/completion. SARS-CoV-2 antibody levels and their neutralization capacities were assessed in collected samples. Results SARS-CoV-2-specific IgA and IgG levels were higher in infant stool post-maternal vaccination amongst milk-fed compared to pre-COVID controls. Human milk and plasma SARS-CoV-2-specific IgA and IgG concentrations decreased over 6 months post-vaccination but remained higher than pre-vaccination levels. We observed improved neutralization capacity in milk antibodies over time. Conclusions The presence of neutralizing SARS-CoV-2-specific antibodies in infant stool following maternal vaccination offers further evidence of the lasting transfer of these antibodies through breastfeeding and their protective effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...