Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Acta Neuropathol ; 144(2): 259-281, 2022 08.
Article in English | MEDLINE | ID: mdl-35666306

ABSTRACT

Oncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS). We show that OSM receptor (OSMRß) expression is increased on circulating lymphocytes of MS patients, indicating their elevated responsiveness to OSM signalling. In addition, OSM production by activated myeloid cells and astrocytes is increased in MS brain lesions. In experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS, OSMRß-deficient mice exhibit milder clinical symptoms, accompanied by diminished T helper 17 (Th17) cell infiltration into the CNS and reduced BBB leakage. In vitro, OSM reduces BBB integrity by downregulating the junctional molecules claudin-5 and VE-cadherin, while promoting secretion of the Th17-attracting chemokine CCL20 by inflamed BBB-endothelial cells and reactive astrocytes. Using flow cytometric fluorescence resonance energy transfer (FRET) quantification, we found that OSM-induced endothelial CCL20 promotes activation of lymphocyte function-associated antigen 1 (LFA-1) on Th17 cells. Moreover, CCL20 enhances Th17 cell adhesion to OSM-treated inflamed endothelial cells, which is at least in part ICAM-1 mediated. Together, these data identify an OSM-CCL20 axis, in which OSM contributes significantly to BBB impairment during neuro-inflammation by inducing permeability while recruiting Th17 cells via enhanced endothelial CCL20 secretion and integrin activation. Therefore, care should be taken when considering OSM as a therapeutic agent for treatment of neuro-inflammatory diseases such as MS.


Subject(s)
Blood-Brain Barrier , Encephalomyelitis, Autoimmune, Experimental , Oncostatin M , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Oncostatin M/metabolism , Oncostatin M/pharmacology , Oncostatin M Receptor beta Subunit/biosynthesis , Oncostatin M Receptor beta Subunit/genetics , Th17 Cells/metabolism , Th17 Cells/pathology
2.
Sci Transl Med ; 14(626): eabj0473, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34985970

ABSTRACT

The migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance. Here, we identified dual immunoglobulin domain containing cell adhesion molecule (DICAM) as a cell trafficking molecule preferentially expressed by T helper 17 (TH17)­polarized CD4+ T lymphocytes. We found that DICAM expression on circulating CD4+ T cells was increased in patients with active RRMS and PMS disease courses, and expression of DICAM ligands was increased on the blood-brain barrier endothelium upon inflammation and in MS lesions. Last, we demonstrated that pharmaceutically neutralizing DICAM reduced murine and human TH17 cell trafficking across the blood-brain barrier in vitro and in vivo, and alleviated disease symptoms in four distinct murine autoimmune encephalomyelitis models, including relapsing-remitting and progressive disease models. Collectively, our data highlight DICAM as a candidate therapeutic target to impede the migration of disease-inducing leukocytes into the CNS in both RRMS and PMS and suggest that blocking DICAM with a monoclonal antibody may be a promising therapeutic approach.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Animals , Blood-Brain Barrier/metabolism , Cell Adhesion Molecules/metabolism , Humans , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Natalizumab/metabolism , Natalizumab/pharmacology , Natalizumab/therapeutic use , Neuroinflammatory Diseases , T-Lymphocytes/metabolism , Th17 Cells
3.
J Clin Invest ; 131(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33635833

ABSTRACT

Dysregulated immune profiles have been described in symptomatic patients infected with SARS-CoV-2. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of (a) patients hospitalized with acute SARS-CoV-2 infection, (b) patients of comparable age and sex hospitalized for another acute disease (SARS-CoV-2 negative), and (c) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g., decreased proportion of T cells) that were similarly associated with acute SARS-CoV-2 infection and non-COVID-19-related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that were associated with SARS-CoV-2 status (e.g., elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days, and mortality. Our data provide an understanding of the immune dysregulation specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2-positive patients at risk of unfavorable outcomes and to uncover candidate molecules to investigate from a therapeutic perspective.


Subject(s)
COVID-19/immunology , Leukocytes/classification , Leukocytes/immunology , SARS-CoV-2 , Acute Disease , Adult , Aged , B-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19/mortality , Case-Control Studies , Cohort Studies , Female , Hospitalization , Humans , Lymphocyte Activation , Male , Middle Aged , Models, Immunological , Monocytes/immunology , Multivariate Analysis , Neutrophils/immunology , Pandemics , Prognosis , Prospective Studies , Quebec/epidemiology , Risk Factors , SARS-CoV-2/immunology , Severity of Illness Index
4.
Article in English | MEDLINE | ID: mdl-32788322

ABSTRACT

OBJECTIVE: To investigate the involvement of interleukin (IL)-26 in neuroinflammatory processes in multiple sclerosis (MS), in particular in blood-brain barrier (BBB) integrity. METHODS: Expression of IL-26 was measured in serum, CSF, in vitro differentiated T helper (TH) cell subsets, and postmortem brain tissue of patients with MS and controls by ELISA, quantitative PCR, and immunohistochemistry. Primary human and mouse BBB endothelial cells (ECs) were treated with IL-26 in vitro and assessed for BBB integrity. RNA sequencing was performed on IL-26-treated human BBB ECs. Myelin oligodendrocyte glycoprotein35-55 experimental autoimmune encephalomyelitis (EAE) mice were injected IP with IL-26. BBB leakage and immune cell infiltration were assessed in the CNS of these mice using immunohistochemistry and flow cytometry. RESULTS: IL-26 expression was induced in TH lymphocytes by TH17-inducing cytokines and was upregulated in the blood and CSF of patients with MS. CD4+IL-26+ T lymphocytes were found in perivascular infiltrates in MS brain lesions, and both receptor chains for IL-26 (IL-10R2 and IL-20R1) were detected on BBB ECs in vitro and in situ. In contrast to IL-17 and IL-22, IL-26 promoted integrity and reduced permeability of BBB ECs in vitro and in vivo. In EAE, IL-26 reduced disease severity and proinflammatory lymphocyte infiltration into the CNS, while increasing infiltration of Tregs. CONCLUSIONS: Our study demonstrates that although IL-26 is preferentially expressed by TH17 lymphocytes, it promotes BBB integrity in vitro and in vivo and is protective in chronic EAE, highlighting the functional diversity of cytokines produced by TH17 lymphocytes.


Subject(s)
Blood-Brain Barrier/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interleukins/metabolism , Multiple Sclerosis/metabolism , Th17 Cells/metabolism , Animals , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Endothelium, Vascular/metabolism , Fetus , Humans , Interleukins/blood , Interleukins/cerebrospinal fluid , Interleukins/pharmacology , Mice , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid
5.
Glia ; 68(5): 859-877, 2020 05.
Article in English | MEDLINE | ID: mdl-31441132

ABSTRACT

Regeneration of myelin, following injury, can occur within the central nervous system to reinstate proper axonal conductance and provide trophic support. Failure to do so renders the axons vulnerable, leading to eventual degeneration, and neuronal loss. Thus, it is essential to understand the mechanisms by which remyelination or failure to remyelinate occur, particularly in the context of demyelinating and neurodegenerative disorders. In multiple sclerosis, oligodendrocyte progenitor cells (OPCs) migrate to lesion sites to repair myelin. However, during disease progression, the ability of OPCs to participate in remyelination diminishes coincident with worsening of the symptoms. Remyelination is affected by a broad range of cues from intrinsic programming of OPCs and extrinsic local factors to the immune system and other systemic elements including diet and exercise. Here we review the literature on these diverse inhibitory factors and the challenges they pose to remyelination. Results spanning several disciplines from fundamental preclinical studies to knowledge gained in the clinic will be discussed.


Subject(s)
Multiple Sclerosis/pathology , Myelin Sheath/pathology , Oligodendrocyte Precursor Cells/pathology , Oligodendroglia/pathology , Remyelination/physiology , Animals , Cell Movement/physiology , Disease Progression , Exercise/physiology , Humans , Microbiota
6.
Cell Death Dis ; 10(2): 45, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30718504

ABSTRACT

The blood-brain barrier (BBB) has a major role in maintaining brain homeostasis through the specialized function of brain endothelial cells (BECs). Inflammation of the BECs and loss of their neuroprotective properties is associated with several neurological disorders, including the chronic neuro-inflammatory disorder multiple sclerosis (MS). Yet, the underlying mechanisms of a defective BBB in MS remain largely unknown. Endothelial to mesenchymal transition (EndoMT) is a pathophysiological process in which endothelial cells lose their specialized function and de-differentiate into mesenchymal cells. This transition is characterized by an increase in EndoMT-related transcription factors (TFs), a downregulation of brain endothelial markers, and an upregulation of mesenchymal markers accompanied by morphological changes associated with cytoskeleton reorganization. Here, we postulate that EndoMT drives BEC de-differentiation, mediates inflammation-induced human BECs dysfunction, and may play a role in MS pathophysiology. We provide evidence that stimulation of human BECs with transforming growth factor (TGF)-ß1 and interleukin (IL)-1ß promotes EndoMT, a process in which the TF SNAI1, a master regulator of EndoMT, plays a crucial role. We demonstrate the involvement of TGF-ß activated kinase 1 (TAK1) in EndoMT induction in BECs. Finally, immunohistochemical analysis revealed EndoMT-associated alterations in the brain vasculature of human post-mortem MS brain tissues. Taken together, our novel findings provide a better understanding of the molecular mechanisms underlying BECs dysfunction during MS pathology and can be used to develop new potential therapeutic strategies to restore BBB function.


Subject(s)
Brain/physiopathology , Inflammation/complications , Multiple Sclerosis/genetics , Multiple Sclerosis/physiopathology , Cells, Cultured , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Humans
7.
Nat Commun ; 9(1): 819, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483510

ABSTRACT

Extracellular matrix (ECM) proteins secreted by blood-brain barrier (BBB) endothelial cells (ECs) are implicated in cell trafficking. We discovered that the expression of ECM epidermal growth factor-like protein 7 (EGFL7) is increased in the CNS vasculature of patients with multiple sclerosis (MS), and in mice with experimental autoimmune encephalomyelitis (EAE). Perivascular CD4 T lymphocytes colocalize with ECM-bound EGFL7 in MS lesions. Human and mouse activated T cells upregulate EGFL7 ligand αvß3 integrin and can adhere to EGFL7 through integrin αvß3. EGFL7-knockout (KO) mice show earlier onset of EAE and increased brain and spinal cord parenchymal infiltration of T lymphocytes. Importantly, EC-restricted EGFL7-KO is associated with a similar EAE worsening. Finally, treatment with recombinant EGFL7 improves EAE, reduces MCAM expression, and tightens the BBB in mouse. Our data demonstrate that EGFL7 can limit CNS immune infiltration and may represent a novel therapeutic avenue in MS.


Subject(s)
Blood-Brain Barrier/drug effects , Brain/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Endothelial Growth Factors/genetics , Spinal Cord/drug effects , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/immunology , Brain/metabolism , Brain/pathology , CD146 Antigen/genetics , CD146 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Calcium-Binding Proteins , EGF Family of Proteins , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Growth Factors/deficiency , Endothelial Growth Factors/immunology , Endothelial Growth Factors/pharmacology , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/immunology , Female , Gene Expression Regulation , Humans , Integrin alpha5/genetics , Integrin alpha5/immunology , Integrin beta3/genetics , Integrin beta3/immunology , Lymphocyte Activation , Male , Mice , Mice, Knockout , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Spinal Cord/immunology
8.
Brain Behav Immun ; 69: 48-56, 2018 03.
Article in English | MEDLINE | ID: mdl-29289661

ABSTRACT

The blood-brain barrier (BBB) assures brain homeostasis through the specialized function of brain endothelial cells (BECs). Dysfunction of the BBB due to inflammatory processes is associated with several neurological disorders, including multiple sclerosis (MS). Understanding the mechanisms that underlie these processes may ultimately lead to new therapeutic strategies to restore BBB function, thereby fighting disease progression. In this study, we demonstrate for the first time a critical role of the Notch signaling pathway in the function of the BBB under resting and inflammatory conditions. Inhibition of the Notch signaling, either by a γ-secretase inhibitor or by genetic ablation of endothelial NOTCH, led to BBB dysfunction in vitro as evidenced by reduced transendothelial electrical resistance (TEER), altered localization and loss of endothelial junction molecules and enhanced macromolecular permeability. Inflamed BECs showed impaired Notch signaling as indicated by reduced level of the downstream targets HES-1 and HES-5. Notably, barrier function was further reduced when the Notch signaling was inhibited under inflammatory conditions, suggesting an additive effect of the Notch signaling and inflammation in BECs. In contrast, inducible overexpression of Notch-intracellular domain 1 (NICD1) rescued the detrimental effect caused by inflammation. Furthermore, we provide evidence that inflammation reduced the expression of the glycosyltransferase Lunatic Fringe (LFNG), a known positive regulator of Notch glycosylation and signaling, thereby leading to disrupted barrier function of BECs. Together, our data demonstrate the functional importance of the conserved Notch signaling pathway in control of the brain endothelial barrier and shed light on the role of LFNG in the regulation of Notch glycosylation and signaling in the adult brain vasculature in both health and disease.


Subject(s)
Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Glycosyltransferases/metabolism , Inflammation/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Brain/metabolism , Cell Line , Cell Survival/physiology , Glycosylation , Humans , Permeability
9.
J Neurosci ; 38(3): 518-529, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29196321

ABSTRACT

Cell-surface molecules are dynamically regulated at the synapse to assemble and disassemble adhesive contacts that are important for synaptogenesis and for tuning synaptic transmission. Metalloproteinases dynamically regulate cellular behaviors through the processing of cell surface molecules. In the present study, we evaluated the role of membrane-type metalloproteinases (MT-MMPs) in excitatory synaptogenesis. We find that MT3-MMP and MT5-MMP are broadly expressed in the mouse cerebral cortex and that MT3-MMP loss-of-function interferes with excitatory synapse development in dissociated cortical neurons and in vivo We identify Nogo-66 receptor (NgR1) as an MT3-MMP substrate that is required for MT3-MMP-dependent synapse formation. Introduction of the shed ectodomain of NgR1 is sufficient to accelerate excitatory synapse formation in dissociated cortical neurons and in vivo Together, our findings support a role for MT3-MMP-dependent shedding of NgR1 in regulating excitatory synapse development.SIGNIFICANCE STATEMENT In this study, we identify MT3-MMP, a membrane-bound zinc protease, to be necessary for the development of excitatory synapses in cortical neurons. We identify Nogo-66 receptors (NgR1) as a downstream target of MT3-MMP proteolytic activity. Furthermore, processing of surface NgR1 by MT3-MMP generates a soluble ectodomain fragment that accelerates the formation of excitatory synapses. We propose that MT3-MMP activity and NgR1 shedding could stimulate circuitry remodeling in the adult brain and enhance functional connectivity after brain injury.


Subject(s)
Cerebral Cortex/metabolism , Matrix Metalloproteinase 16/metabolism , Neurons/metabolism , Nogo Receptor 1/metabolism , Synapses/metabolism , Animals , Metallothionein 3 , Mice , Rats
10.
Proc Natl Acad Sci U S A ; 114(4): E524-E533, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28069965

ABSTRACT

Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule found on blood-brain barrier endothelial cells (BBB-ECs) that was previously shown to be involved in leukocyte transmigration across the endothelium. In the present study, we found that ALCAM knockout (KO) mice developed a more severe myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE). The exacerbated disease was associated with a significant increase in the number of CNS-infiltrating proinflammatory leukocytes compared with WT controls. Passive EAE transfer experiments suggested that the pathophysiology observed in active EAE was linked to the absence of ALCAM on BBB-ECs. In addition, phenotypic characterization of unimmunized ALCAM KO mice revealed a reduced expression of BBB junctional proteins. Further in vivo, in vitro, and molecular analysis confirmed that ALCAM is associated with tight junction molecule assembly at the BBB, explaining the increased permeability of CNS blood vessels in ALCAM KO animals. Collectively, our data point to a biologically important function of ALCAM in maintaining BBB integrity.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Endothelial Cells/metabolism , Activated-Leukocyte Cell Adhesion Molecule/genetics , Animals , Blood-Brain Barrier/cytology , Blood-Brain Barrier/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Homeostasis , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Severity of Illness Index , Spinal Cord/metabolism , Tight Junction Proteins/metabolism
11.
Semin Immunopathol ; 37(6): 577-90, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26245144

ABSTRACT

The brain is the organ with the highest metabolic demand in the body. Therefore, it needs specialized vasculature to provide it with the necessary oxygen and nutrients, while protecting it against pathogens and toxins. The blood-brain barrier (BBB) is very tightly regulated by specialized endothelial cells, two basement membranes, and astrocytic endfeet. The proximity of astrocytes to the vessel makes them perfect candidates to influence the function of the BBB. Moreover, other glial cells are also known to contribute to either BBB quiescence or breakdown. In this review, we summarize the knowledge on glial regulation of the BBB during development, in homeostatic conditions in the adult, and during neuroinflammatory responses.


Subject(s)
Astrocytes/physiology , Blood-Brain Barrier/cytology , Brain/blood supply , Microglia/physiology , Adult , Brain/physiology , Endothelial Cells/physiology , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...