Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(49): 47277-47282, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107963

ABSTRACT

Quantitative polymerase chain reaction (qPCR) is widely used in detection of nucleic acids, but existing methods either lack sequence-specific detection or are costly because they use chemically modified DNA probes. In this work, we apply a DNA aptamer and light-up dye-based chemistry for qPCR for nucleic acid quantification. In contrast to the conventional qPCR, in our method, we observe an exponential decrease in fluorescence upon DNA amplification. The qPCR method we developed produced consistent Ct vs log10 (DNA amount) standard curves, which have a linearfit with R2 value > 0.99. This qPCR technique was validated by quantifying gene targets from Streptococcus zooepidemicus (SzhasB) and Mycobacterium tuberculosis (MtrpoB). We show that our strategy is able to successfully detect DNA at as low as 800 copies/µL. To the best of our knowledge, this is the first study demonstrating the application of light-up dyes and DNA aptamers in qPCR.

2.
Biochem Soc Trans ; 51(6): 1989-2004, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38108469

ABSTRACT

SLC25A51 is the primary mitochondrial NAD+ transporter in humans and controls many local reactions by mediating the influx of oxidized NAD+. Intriguingly, SLC25A51 lacks several key features compared with other members in the mitochondrial carrier family, thus its molecular mechanism has been unclear. A deeper understanding would shed light on the control of cellular respiration, the citric acid cycle, and free NAD+ concentrations in mammalian mitochondria. This review discusses recent insights into the transport mechanism of SLC25A51, and in the process highlights a multitiered regulation that governs NAD+ transport. The aspects regulating SLC25A51 import activity can be categorized as contributions from (1) structural characteristics of the transporter itself, (2) its microenvironment, and (3) distinctive properties of the transported ligand. These unique mechanisms further evoke compelling new ideas for modulating the activity of this transporter, as well as new mechanistic models for the mitochondrial carrier family.


Subject(s)
Mitochondria , NAD , Animals , Humans , Biological Transport , Cell Respiration , Mammals/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , NAD/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL