Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 344: 118504, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37406493

ABSTRACT

The management of secondary sludge from aerobic treatment of effluents from the cellulose industry is a current problem. The usual ways of disposal do not provide added value to the waste as they assume an economy based on "take-make-waste" (linear economy). In this work, thermal hydrolysis (TH) and anaerobic digestion (AD) are proposed to valorize this biosludge. Based on a Doehlert experimental plan, a response surface methodology (RSM) defined by seven different TH conditions is proposed. After TH, biomethanation potential (BMP) tests were performed to evaluate the AD possibilities. The TH conditions cover a temperature range between 125 °C and 205 °C and a reaction time from 15 min to 45 min. The TH process was successful in enhancing the bioavailability of the waste, increasing the concentration of soluble organic matter quantified by chemical oxygen demand of the soluble fraction (CODs), and decreasing the concentration of volatile suspended solids (VSS). However, response surfaces performed for CODs and VSS revealed the existence of optimums, which demonstrated the adverse effects of the more severe TH conditions. Organic matter solubilization was confirmed by microscopic observations. The amount of suspended organic matter after TH is reduced by two to three times compared to the untreated value. The subsequent BMP of the hydrolyzed waste increases between 100% and 220% compared to the untreated condition, wich had a BMP value of 84 NmL CH4 gVS-1. The response surface determined for the BMP reveals the presence of a maximum point of methane production at 202 °C for 31 min, which differs from the maximum CODs value observed at 196 °C for 40 min.


Subject(s)
Cellulose , Methane , Anaerobiosis , Hydrolysis , Waste Disposal, Fluid/methods , Sewage , Bioreactors
2.
Waste Manag Res ; 41(8): 1331-1341, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36912492

ABSTRACT

The current disposal of biosludge generated in wastewater treatment has high costs and causes environmental problems, anaerobic digestion (AD) of solid waste is a promising alternative. Thermal hydrolysis (TH) is an accepted technology to enhance anaerobic biodegradability of sewage sludge, but this technology has not been developed to be used with biological sludge from industrial wastewater treatment. In this work, the improvements to the AD of biological sludge from cellulose industry when thermal pretreatment is carried out were experimentally determined. The experimental conditions for TH were 140 °C and 165 °C for 45 minutes. Batch tests were carried out to quantify methane production evaluated as biomethane potential (BMP), anaerobic biodegradability according to volatile solids (VS) consumption and kinetic adjustments. An innovative kinetic model based on the serial mechanism of fast and slow biodegradation fractions was tested for untreated waste, and parallel mechanism was also evaluated. Increases in BMP and biodegradability values according to VS consumption were determined with increasing TH temperature. The results of 241 NmL CH4 gVS substrate-1 for BMP and 65% biodegradability are reported for the 165 °C treatment. AD rate increased for the TH waste compared to the untreated biosludge. Improvements of up to 159% for BMP and 260% for biodegradability according to VS consumption were quantified for TH biosludge compared to untreated biosludge.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Waste Disposal, Fluid/methods , Methane , Hydrolysis , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL