Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cells ; 12(3)2023 01 31.
Article in English | MEDLINE | ID: mdl-36766808

ABSTRACT

The hallmark of HIV-1 infection is the rapid dysregulation of immune functions. Recent investigations for biomarkers of such dysregulation in people living with HIV (PLWH) reveal a strong correlation between viral rebound and immune activation with an increased abundance of extracellular vesicles (EVs) enriched with microRNA-155. We propose that the activation of peripheral blood mononuclear cells (PBMCs) leads to an increased miR-155 expression and production of miR-155-rich extracellular vesicles (miR-155-rich EVs), which can exacerbate HIV-1 infection by promoting viral replication. PBMCs were incubated with either HIV-1 (NL4.3Balenv), a TLR-7/8 agonist, or TNF. EVs were harvested from the cell culture supernatant by differential centrifugation, and RT-qPCR quantified miR-155 in cells and derived EVs. The effect of miR-155-rich EVs on replication of HIV-1 in incubated PBMCs was then measured by viral RNA and DNA quantification. HIV-1, TLR7/8 agonist, and TNF each induced the release of miR-155-rich EVs by PBMCs. These miR-155-rich EVs increased viral replication in PBMCs infected in vitro. Infection with HIV-1 and inflammation promote the production of miR-155-rich EVs, enhancing viral replication. Such autocrine loops, therefore, could influence the course of HIV-1 infection by promoting viral replication.


Subject(s)
Extracellular Vesicles , HIV Infections , HIV-1 , MicroRNAs , Humans , MicroRNAs/metabolism , HIV-1/metabolism , Leukocytes, Mononuclear/metabolism , Extracellular Vesicles/metabolism , HIV Infections/metabolism
2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768245

ABSTRACT

Extracellular vesicles (EVs) and their cargo have been studied intensively as potential sources of biomarkers in HIV infection; however, their DNA content, particularly the mitochondrial portion (mtDNA), remains largely unexplored. It is well known that human immunodeficiency virus (HIV) infection and prolonged antiretroviral therapy (ART) lead to mitochondrial dysfunction and reduced mtDNA copy in cells and tissues. Moreover, mtDNA is a well-known damage-associated molecular pattern molecule that could potentially contribute to increased immune activation, oxidative stress, and inflammatory response. We investigated the mtDNA content of large and small plasma EVs in persons living with HIV (PLWH) and its implications for viral replication, ART use, and immune status. Venous blood was collected from 196 PLWH, ART-treated or ART-naïve (66 with ongoing viral replication, ≥20 copies/mL), and from 53 HIV-negative persons, all recruited at five HIV testing or treatment centers in Burkina Faso. Large and small plasma EVs were purified and counted, and mtDNA level was measured by RT-qPCR. Regardless of HIV status, mtDNA was more abundant in large than small EVs. It was more abundant in EVs of viremic than aviremic and control participants and tended to be more abundant in participants treated with Tenofovir compared with Zidovudine. When ART treatment was longer than six months and viremia was undetectable, no variation in EV mtDNA content versus CD4 and CD8 count or CD4/CD8 ratio was observed. However, mtDNA in large and small EVs decreased with years of HIV infection and ART. Our results highlight the impact of viral replication and ART on large and small EVs' mtDNA content. The mechanisms underlying the differential incorporation of mtDNA into EVs and their effects on the surrounding cells warrant further investigation.


Subject(s)
Extracellular Vesicles , HIV Infections , HIV-1 , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HIV Infections/drug therapy , HIV Infections/genetics , HIV-1/physiology , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Virus Replication
3.
Front Immunol ; 13: 916599, 2022.
Article in English | MEDLINE | ID: mdl-36105810

ABSTRACT

People living with HIV (PLWH), despite suppression of viral replication with antiretroviral therapy (ART), have high morbidity and mortality due to immune activation and chronic inflammation. Discovering new biomarkers of immune activation status under ART will be pertinent to improve PLWH quality of life when the majority will be treated. We stipulate that plasma large and small extracellular vesicle (EVs) and their microRNA content could be easily measured biomarkers to monitor immune activation in PLWH. Venous blood samples from n = 128 ART-treated PLWH with suppressed viral load (≤ 20 copies/mL) and n = 60 HIV-uninfected participants were collected at five testing or treatment centers of PLWH in Burkina Faso. Large and small plasma EVs were purified, counted, and the mature miRNAs miR-29a, miR-146a, and miR-155 were quantified by RT-qPCR. Diagnostic performances of large and small EVs miRNAs level were evaluated by receiver operating characteristic (ROC) curve analysis and principal component analysis (PCA). Among the EVs microRNA measured, only large EVs miR-155 copies distinguished PLWH with immune activation, with AUC of 0.75 for CD4/CD8 < 1 (95% CI: 0.58-0.91, P = 0.0212), and 0.77 for CD8 T cells ≥ 500/µL (95% CI: 0.63-0.92, P = 0.0096). In addition, PCA results suggest that large EVs miR-155 copies may be a biomarker of immune activation. Since miR-155 may influence immune cell function, its enrichment in large EV subpopulations could be a functional biomarker of immune activation in PLWH on ART. This measure could help to monitor and diagnose the immune activation with more accuracy.


Subject(s)
HIV Infections , MicroRNAs , Anti-Retroviral Agents/therapeutic use , Biomarkers , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , Quality of Life
4.
Pathog Immun ; 6(1): 1-28, 2021.
Article in English | MEDLINE | ID: mdl-33987483

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH. METHODS: Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes. RESULTS: HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count. CONCLUSIONS: These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.

5.
Pathogens ; 10(5)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923310

ABSTRACT

BACKGROUND: Several types of extracellular vesicles (EVs) secreted by various immune and non-immune cells are present in the human plasma. We previously demonstrated that EV abundance and microRNA content change in pathological conditions, such as HIV infection. Here, we investigated daily variations of large and small EVs, in terms of abundance and microRNA contents in people living with HIV (PLWH) receiving antiretroviral therapy (HIV+ART) and uninfected controls (HIV-). METHODS: Venous blood samples from n = 10 HIV+ART and n = 10 HIV- participants were collected at 10:00 and 22:00 the same day. Large and small plasma EVs were purified, counted, and the mature miRNAs miR-29a, miR-29b, miR-92, miR-155, and miR-223 copies were measured by RT-PCR. RESULTS: Large EVs were significantly bigger in the plasma collected at 10:00 versus 22:00 in both groups. There was a significant day-night increase in the quantity of 5 miRNAs in HIV- large EVs. In HIV+ART, only miR-155 daily variation has been observed in large EVs. Finally, EV-miRNA content permits to distinguish HIV- to HIV+ART in multivariate analysis. CONCLUSION: These results point that plasma EV amount and microRNA contents are under daily variation in HIV- people. This new dynamic measure is disrupted in PLWH despite viral-suppressive ART. This study highlights a significant difference concerning EV abundance and their content measured at 22:00 between both groups. Therefore, the time of blood collection must be considered in the future for the EV as biomarkers.

6.
Oncogene ; 40(18): 3231-3244, 2021 05.
Article in English | MEDLINE | ID: mdl-33833398

ABSTRACT

MicroRNAs and RNA-binding proteins (RBPs) primarily target the 3' UTR of mRNAs to control their translation and stability. However, their co-regulatory effects on specific mRNAs in physiology and disease are yet to be fully explored. CSDE1 is an RBP that promotes metastasis in melanoma and mechanisms underlying its oncogenic activities need to be completely defined. Here we report that CSDE1 interacts with specific miRNA-induced silencing complexes (miRISC) in melanoma. We find an association of CSDE1 with AGO2, the essential component of miRISC, which is facilitated by target mRNAs and depends on the first cold shock domain of CSDE1. Both CSDE1 and AGO2 bind to 3' UTR of PMEPA1. CSDE1 counters AGO2 binding, leading to an increase of PMEPA1 expression. We also identify a miRNA, miR-129-5p, that represses PMEPA1 expression in melanoma. Collectively, our results show that PMEPA1 promotes tumorigenic traits and that CSDE1 along with miR-129-5p/AGO2 miRISC act antagonistically to fine-tune PMEPA1 expression toward the progression of melanoma.


Subject(s)
Argonaute Proteins , MicroRNAs , HEK293 Cells , Humans , Melanoma/genetics , RNA, Messenger/genetics , RNA-Binding Proteins
7.
J Tissue Eng Regen Med ; 13(12): 2300-2311, 2019 12.
Article in English | MEDLINE | ID: mdl-31502756

ABSTRACT

Our laboratory has developed a scaffold-free cell-based method of tissue engineering to produce bilayered tissue-engineered skin substitutes (TESs) from epidermal and dermal cells. However, TES pigmentation is absent or heterogeneous after grafting, due to a suboptimal number of melanocytes in culture. Our objectives were to produce TESs with a sufficient quantity of melanocytes from different pigmentation phototypes (light and dark) to achieve a homogeneous color and to evaluate whether the resulting pigmentation was photoprotective against ultraviolet radiation (UVR)-induced DNA damage in the dermis and the epidermis. TESs were cultured using different concentrations of melanocytes (100, 200, and 1,500 melanocytes/mm2 ), and pigmentation was evaluated in vitro and after grafting onto an athymic mouse excisional model. Dermal and epidermal DNA damage was next studied, exposing pigmented TESs to 13 and 32.5 J/cm2 UVR in vitro. We observed that melanocyte cell density increased with culture time until reaching a plateau corresponding to the cell distribution of native skin. Pigmentation of melanocyte-containing TESs was similar to donor skin, with visible melanin transfer from melanocytes to keratinocytes. The amount of melanin in TESs was inversely correlated to the UVR-induced formation of cyclobutane pyrimidine dimer in dermal fibroblasts and keratinocytes. Our results indicate that the pigmentation conferred by the addition of melanocytes in TESs protects against UVR-induced DNA damage. Therefore, autologous pigmented TESs could ensure photoprotection after grafting.


Subject(s)
Dermis/metabolism , Epidermis/metabolism , Keratinocytes/metabolism , Melanocytes/metabolism , Skin Pigmentation/radiation effects , Skin, Artificial , Ultraviolet Rays , Dermis/pathology , Epidermis/pathology , Humans , Keratinocytes/pathology , Melanocytes/pathology
8.
Acta Biomater ; 90: 192-204, 2019 05.
Article in English | MEDLINE | ID: mdl-30953802

ABSTRACT

Organs are needed for the long-term replacement of diseased or wounded tissues. Various technologies based on cells seeded in synthetic or biomaterial scaffolds, or scaffold-free methods have been developed in order to produce substitutes that mimic native organs and tissues. For cell-based approaches, the use of living allogeneic fibroblasts could potentially lead to the production of "off-the-shelf" bioengineered organs/tissues. However, questions remain regarding the outcome of allogeneic grafts in terms of persistence of allogeneic cells, tolerance and the host immune reaction against the tissue after implantation. To evaluate graft tolerance of engineered-tissues containing non-autologous fibroblasts, tissue-engineered skin substitutes (TESs) produced with syngeneic, allogeneic or xenogeneic fibroblasts associated with syngeneic, allogeneic or xenogeneic epithelial cells were grafted in mice as primary and secondary grafts. The immune response was evaluated by histological analysis and immunodetection of M2 macrophages, CD4- and CD8-positive T cells, 15, 19, 35 and 56 days after grafting. Tissue-engineered skin composed of non-autologous epithelial cells were rejected. In contrast, TESs composed of non-autologous fibroblasts underlying syngeneic epithelial cells were still present 56 days after grafting. This work shows that TES composed of non-autologous fibroblasts and autologous epithelial cells are not rejected after grafting. STATEMENT OF SIGNIFICANCE: We found that tissue-engineered skin substitutes produced by a scaffold-free cell-based approach from allogeneic fibroblasts and autologous epithelial cells are not rejected after grafting and allow for the permanent coverage of a full-thickness skin wounds. In the field of tissue engineering, these findings open the possibility of selecting a human fibroblastic or stromal cell population based on its biological properties and adequate biosafety, banking it, in order to produce "ready-to-use" bioengineered organs/tissues that could be grafted to any patient without eliciting immune reaction after grafting. Our results can be generalized to any organs produced from fibroblasts. Thus, it is a great step with multiple applications in tissue engineering and transplantation.


Subject(s)
Fibroblasts , Immune Tolerance , Keratinocytes , Skin Transplantation , Skin, Artificial , Tissue Engineering , Adult , Allografts , Animals , Fibroblasts/immunology , Fibroblasts/pathology , Fibroblasts/transplantation , Heterografts , Humans , Isografts , Keratinocytes/immunology , Keratinocytes/pathology , Keratinocytes/transplantation , Male , Mice , Mice, Inbred BALB C , Middle Aged
9.
Tissue Eng Part A ; 24(7-8): 607-615, 2018 04.
Article in English | MEDLINE | ID: mdl-28726551

ABSTRACT

Primary corneal endothelial cell (CEC) cultures and 3D-engineered tissue models were used to study the aberrant deposition of extracellular matrix (ECM) in a vision impairing pathology known as Fuchs endothelial corneal dystrophy (FECD). CECs were isolated from excised Descemet membranes of patients with end-stage FECD. CECs isolated from healthy corneas served as controls. Microarray gene profiling was performed on postconfluent cultures of healthy and FECD cells. Protein expression analyses were conducted on tissue models that were engineered by seeding an endothelium on previously devitalized human stromal carriers. The engineered endothelia were kept in culture for 1-3 weeks to reform the endothelial monolayer. Protein expression of integrin subunits α4, α6, αv, and ß1, as well as laminin, type IV collagen, fibronectin, clusterin, and transforming growth factor ß-induced protein (TGFßIp) was then assessed by immunofluorescence. Microarray analysis showed nonstatistical twofold downregulation of collagen-coding genes (COL4A4, COL8A2, and COL21A1) and a twofold upregulation of the COL6A1, laminin α3 gene LAMA3, and integrin subunit α10 gene ITGA10 in FECD cells. Fibronectin type III domain containing 4 (FNDC4) and integrin ß5 (ITGB5) genes was significantly upregulated in FECD cells. Immunostainings demonstrated that the protein expression of the integrin subunits α4, α6, αv, and ß1, type IV collagen, as well as laminin remained similar between native and engineered endothelia. TGFßIp expression was found on the stromal side of both FECD and healthy Descemet's membrane, and only one out of three FECD specimens was positive for the clusterin protein. Interestingly, the ECM protein fibronectin was also found to have a stronger presence on engineered FECD tissues, a result consistent with the native FECD specimens. To conclude, this study allowed to identify fibronectin deposition as one of the first steps in the pathogenesis of FECD, as defined by our engineered tissue model. This opens the way to an entirely new perspective for in vitro pharmacological testing of new therapies for FECD, the leading indication for corneal transplantation in North America.


Subject(s)
Extracellular Matrix/metabolism , Fuchs' Endothelial Dystrophy/metabolism , Aged , Aged, 80 and over , Cells, Cultured , Collagen Type IV/metabolism , Collagen Type VI/metabolism , Collagen Type VIII/metabolism , Endothelium, Corneal/metabolism , Extracellular Matrix Proteins/metabolism , Female , Fibronectins/metabolism , Humans , Integrin beta Chains/metabolism , Integrins/metabolism , Male , Middle Aged , Proteins/metabolism
10.
Tissue Eng Part A ; 23(7-8): 313-322, 2017 04.
Article in English | MEDLINE | ID: mdl-27958884

ABSTRACT

As time to final coverage is the essence for better survival outcome in severely burned patients, we have continuously strived to reduce the duration for the preparation of our bilayered self-assembled skin substitutes (SASS). These SASS produced in vitro by the self-assembly approach have a structure and functionality very similar to native skin. Recently, we have shown that a decellularized dermal matrix preproduced by the self-assembly approach could be used as a template to further obtain self-assembled skin substitute using a decellularized dermal template (SASS-DM) in vitro. Thus, the production period with patient cells was then reduced to about 1 month. Herein, preclinical animal experiments have been performed to confirm the integration and evolution of such a graft and compare the maturation of SASS and SASS-DM in vivo. Both tissues, reconstructed from adult or newborn cells, were grafted on athymic mice. Green fluorescent protein-transfected keratinocytes were also used to follow grafted tissues weekly for 6 weeks using an in vivo imaging system (IVIS). Cell architecture and differentiation were studied with histological and immunofluorescence analyses at each time point. Graft integration, macroscopic evolution, histological analyses, and expression of skin differentiation markers were similar between both skin substitutes reconstructed from either newborn or adult cells, and IVIS observations confirmed the efficient engraftment of SASS-DM. In conclusion, our in vivo graft experiments on a mouse model demonstrated that the SASS-DM had equivalent macroscopic, histological, and differentiation evolution over a 6-week period, when compared with the SASS. The tissue-engineered SASS-DM could improve clinical availability and advantageously shorten the time necessary for the definitive wound coverage of severely burned patients.


Subject(s)
Skin, Artificial , Tissue Engineering/methods , Animals , Cells, Cultured , Fibroblasts/cytology , Green Fluorescent Proteins , Humans , Keratinocytes/cytology , Male , Mice , Mice, Nude
11.
PLoS One ; 10(4): e0125564, 2015.
Article in English | MEDLINE | ID: mdl-25918849

ABSTRACT

Three-dimensional tissues, such as the cornea, are now being engineered as substitutes for the rehabilitation of vision in patients with blinding corneal diseases. Engineering of tissues for translational purposes requires a non-invasive monitoring to control the quality of the resulting biomaterial. Unfortunately, most current methods still imply invasive steps, such as fixation and staining, to clearly observe the tissue-engineered cornea, a transparent tissue with weak natural contrast. Second- and third-harmonic generation imaging are well known to provide high-contrast, high spatial resolution images of such tissues, by taking advantage of the endogenous contrast agents of the tissue itself. In this article, we imaged tissue-engineered corneal substitutes using both harmonic microscopy and classic histopathology techniques. We demonstrate that second- and third-harmonic imaging can non-invasively provide important information regarding the quality and the integrity of these partial-thickness posterior corneal substitutes (observation of collagen network, fibroblasts and endothelial cells). These two nonlinear imaging modalities offer the new opportunity of monitoring the engineered corneas during the entire process of production.


Subject(s)
Cornea/physiology , Microscopy/methods , Tissue Engineering/methods , Adult , Collagen/metabolism , Corneal Stroma/metabolism , Endothelial Cells/metabolism , Endothelium, Corneal/cytology , Extracellular Matrix/metabolism , Humans , Infant , Infant, Newborn
12.
Invest Ophthalmol Vis Sci ; 55(10): 6908-20, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25277228

ABSTRACT

PURPOSE: Corneal tissue shortage has become a major concern worldwide, which has motivated the search for alternative solutions to eye bank human eyes for corneal transplantation. Minimally invasive lamellar transplantation and tissue engineering may offer new opportunities for the rehabilitation of diseased corneas. The aim of this study was to evaluate the biocompatibility and functionality of stromal lamellar grafts tissue-engineered (TE) in vitro and transplanted in vivo in the cornea of a feline model. METHODS: The corneal stromas were engineered in culture from corneal stromal cells using the self-assembly approach, without the addition of exogenous material or scaffold. Eight healthy animals underwent two intrastromal grafts in one eye and the contralateral eye was used as a control. Animals were followed with slit-lamp ophthalmic examination, corneal esthesiometry and optical coherent tomography. Confocal microscopy, immunofluorescence, histology, and transmission electron microscopy (TEM) were performed at 4 months. RESULTS: Four months after transplantation, the TE-stromal grafts were transparent, functional, and well tolerated by the eye. All grafts remained avascular, with no signs of immune rejection, despite a short course of low-dose topical steroids. Corneal sensitivity returned to preoperative level and reinnervation of the grafts was confirmed by confocal microscopy and immunofluorescence. Histology and TEM of the TE-grafts showed a lamellar stromal structure with regular collagen fibril arrangement. CONCLUSIONS: These results open the way to an entirely new therapeutic modality. Intracorneal filling using a biocompatible, transparent, and malleable TE-stroma could be the basis for multiple types of novel therapeutic options in corneal interventional surgery.


Subject(s)
Corneal Stroma/transplantation , Corneal Transplantation/methods , Tissue Engineering , Adult , Animals , Cats , Cells, Cultured , Corneal Stroma/ultrastructure , Disease Models, Animal , Endothelium, Corneal/ultrastructure , Graft Survival , Histocompatibility Testing/methods , Humans , Microscopy, Confocal , Tomography, Optical Coherence , Transplantation, Heterologous
13.
Tissue Eng Part A ; 19(7-8): 1023-38, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23173810

ABSTRACT

To adequately and permanently restore organ function after grafting, human tissue-engineered skin substitutes (TESs) must ultimately contain and preserve functional epithelial stem cells (SCs). It is therefore essential that a maximum of SCs be preserved during each in vitro step leading to the production of TESs such as the culture process and the elaboration of a skin cell bank by cryopreservation. To investigate the presence and functionality of epithelial SCs within the human TESs made by the self-assembly approach, slow-cycling cells were identified using 5'-bromo-2'-deoxyuridine (BrdU) in the three-dimensional construct. A subset of basal epithelial cells retained the BrdU label and was positive for the SC-associated marker keratin 19 within TESs after a chase of 21 days in culture post-BrdU labeling. Moreover, keratinocytes harvested from TESs gave rise to SC-like colonies in secondary monolayer subcultures, indicating that SCs were preserved within TESs. To evaluate the effect of cryopreservation with dimethyl sulfoxide and storage in liquid nitrogen on SCs, human epithelial cells were extracted from skin samples, amplified in culture, and used to produce TESs, before cryopreservation as well as after thawing. We found that the proportion and the growth potential of epithelial SCs in monolayer culture and in TESs remained constant before and after cryopreservation. Further, the functionality of these substitutes was demonstrated by successfully grafting human TESs on athymic mice for 6 months. We conclude that human epithelial skin SCs are adequately preserved upon human tissue reconstruction. Thus, these TESs produced by the self-assembly approach are suitable for clinical applications.


Subject(s)
Epithelial Cells/cytology , Skin, Artificial , Stem Cells/cytology , Tissue Engineering/methods , Adolescent , Adult , Aged , Animals , Bromodeoxyuridine/metabolism , Cells, Cultured , Colony-Forming Units Assay , Cryopreservation , Flow Cytometry , Humans , Keratin-19/metabolism , Keratinocytes/cytology , Mice , Mice, Nude , Middle Aged , Stem Cells/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...