Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Am J Med Genet A ; 194(5): e63539, 2024 May.
Article in English | MEDLINE | ID: mdl-38204290

ABSTRACT

The neurodevelopmental disorder known as Helsmoortel-van der Aa syndrome (HVDAS, MIM#616580) or ADNP syndrome (Orphanet, ORPHA:404448) is a multiple congenital anomaly (MCA) condition, reported as a syndrome in 2014, associated with deleterious variants in the ADNP gene (activity-dependent neuroprotective protein; MIM*611386) in several children. First reported in the turn of the century, ADNP is a protein with crucial functions for the normal development of the central nervous system and with pleiotropic effects, explaining the multisystemic character of the syndrome. Affected individuals present with striking facial dysmorphic features and variable congenital defects. Herein, we describe a novel case series of HVDAS Italian patients, illustrating their clinical findings and the related genotype-phenotype correlations. Interestingly, the cutaneous manifestations are also extensively expanded, giving an important contribution to the clinical characterization of the condition, and highlighting the relation between skin abnormalities and ADNP defects.


Subject(s)
Abnormalities, Multiple , Autistic Disorder , Intellectual Disability , Musculoskeletal Abnormalities , Neurodevelopmental Disorders , Child , Humans , Mutation , Intellectual Disability/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Autistic Disorder/genetics , Neurodevelopmental Disorders/genetics , Homeodomain Proteins/genetics , Syndrome
2.
J Mol Neurosci ; 74(1): 15, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282129

ABSTRACT

Activity-dependent neuroprotective protein (ADNP) is essential for neurodevelopment and de novo mutations in ADNP cause the ADNP syndrome. From brain pathologies point of view, tauopathy has been demonstrated at a young age, implying stunted development coupled with early/accelerated neurodegeneration. Given potential genotype-phenotype differences and age-dependency, we have assessed here a cohort of 15 individuals (1-27-year-old), using 1-3 longitudinal parent (caretaker) interview/s (Vineland 3 questionnaire) over several years. Our results indicated developmental delays, or even developmental arrests, coupled with potential spurts of development at early ages. Severe outcomes correlated with the truncating high impact mutation, in other words, the remaining mutated protein length as well as with the tested individual age, corroborating the hypothesis of developmental delays coupled with accelerated aging. A significant correlation was noted between mutated protein length and communication, implying a high impact of ADNP on communicative skills. Additionally, correlations were discovered between the two previously described epi-genetic signatures in ADNP emphasizing aberrant acquisition of motor behaviors, with truncating mutations around the nuclear localization signal being mostly affected. Finally, all individuals seem to acquire an age equivalent of 1-6 years, requiring disease modification treatment, such as the ADNP-derived drug candidate, NAP (davunetide), which has recently shown efficacy in women suffering from the neurodegenerative disorder, progressive supranuclear palsy (PSP), a late-onset tauopathy.


Subject(s)
Homeodomain Proteins , Tauopathies , Male , Humans , Female , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Mutation , Syndrome , Homeodomain Proteins/genetics , Phenotype , Genotype , Nerve Tissue Proteins/genetics
3.
Cytoskeleton (Hoboken) ; 81(1): 16-23, 2024 01.
Article in English | MEDLINE | ID: mdl-37572043

ABSTRACT

With 50 years to the original discovery of Tau, I gave here my perspective, looking through the prism of activity-dependent neuroprotective protein (ADNP), and the influence of sex. My starting point was vasoactive intestinal peptide (VIP), a regulator of ADNP. I then moved to the original discovery of ADNP and its active neuroprotective site, NAP, drug candidate, davunetide. Tau-ADNP-NAP interactions were then explained with emphasis on sex and future translational medicine.

4.
Transl Psychiatry ; 13(1): 319, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845254

ABSTRACT

Progressive supranuclear palsy (PSP) is a pure tauopathy, implicating davunetide, enhancing Tau-microtubule interaction, as an ideal drug candidate. However, pooling patient data irrespective of sex concluded no efficacy. Here, analyzing sex-dependency in a 52 week-long- PSP clinical trial (involving over 200 patients) demonstrated clear baseline differences in brain ventricular volumes, a secondary endpoint. Dramatic baseline ventricular volume-dependent/volume increase correlations were observed in 52-week-placebo-treated females (r = 0.74, P = 2.36-9), whereas davunetide-treated females (like males) revealed no such effects. Assessment of primary endpoints, by the PSP Rating Scale (PSPRS) and markedly more so by the Schwab and England Activities of Daily Living (SEADL) scale, showed significantly faster deterioration in females, starting at trial week 13 (P = 0.01, and correlating with most other endpoints by week 52). Twice daily davunetide treatments slowed female disease progression and revealed significant protection according to the SEADL scale as early as at 39 weeks (P = 0.008), as well as protection of the bulbar and limb motor domains considered by the PSPRS, including speaking and swallowing difficulties caused by brain damage, and deterioration of fine motor skills, respectably (P = 0.01), at 52 weeks. Furthermore, at 52 weeks of trial, the exploratory Geriatric Depression Scale (GDS) significantly correlated with the SEADL scale deterioration in the female placebo group and demonstrated davunetide-mediated protection of females. Female-specific davunetide-mediated protection of ventricular volume corresponded to clinical efficacy. Together with the significantly slower disease progression seen in men, the results reveal sex-based drug efficacy differences, demonstrating the neuroprotective and disease-modifying impact of davunetide treatment for female PSP patients.


Subject(s)
Supranuclear Palsy, Progressive , Male , Humans , Female , Aged , Supranuclear Palsy, Progressive/drug therapy , Activities of Daily Living , Sex Factors , Disease Progression
6.
Cells ; 12(18)2023 09 11.
Article in English | MEDLINE | ID: mdl-37759476

ABSTRACT

(1) Background: Recently, we showed aberrant nuclear/cytoplasmic boundaries/activity-dependent neuroprotective protein (ADNP) distribution in ADNP-mutated cells. This malformation was corrected upon neuronal differentiation by the ADNP-derived fragment drug candidate NAP (davunetide). Here, we investigated the mechanism of NAP nuclear protection. (2) Methods: CRISPR/Cas9 DNA-editing established N1E-115 neuroblastoma cell lines that express two different green fluorescent proteins (GFPs)-labeled mutated ADNP variants (p.Tyr718* and p.Ser403*). Cells were exposed to NAP conjugated to Cy5, followed by live imaging. Cells were further characterized using quantitative morphology/immunocytochemistry/RNA and protein quantifications. (3) Results: NAP rapidly distributed in the cytoplasm and was also seen in the nucleus. Furthermore, reduced microtubule content was observed in the ADNP-mutated cell lines. In parallel, disrupting microtubules by zinc or nocodazole intoxication mimicked ADNP mutation phenotypes and resulted in aberrant nuclear-cytoplasmic boundaries, which were rapidly corrected by NAP treatment. No NAP effects were noted on ADNP levels. Ketamine, used as a control, was ineffective, but both NAP and ketamine exhibited direct interactions with ADNP, as observed via in silico docking. (4) Conclusions: Through a microtubule-linked mechanism, NAP rapidly localized to the cytoplasmic and nuclear compartments, ameliorating mutated ADNP-related deficiencies. These novel findings explain previously published gene expression results and broaden NAP (davunetide) utilization in research and clinical development.


Subject(s)
Ketamine , Neuroprotective Agents , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , tau Proteins/metabolism , Cell Nucleus/metabolism
7.
PLoS Biol ; 21(5): e3002082, 2023 05.
Article in English | MEDLINE | ID: mdl-37126512

ABSTRACT

The utility of mouse and rat studies critically depends on their replicability in other laboratories. A widely advocated approach to improving replicability is through the rigorous control of predefined animal or experimental conditions, known as standardization. However, this approach limits the generalizability of the findings to only to the standardized conditions and is a potential cause rather than solution to what has been called a replicability crisis. Alternative strategies include estimating the heterogeneity of effects across laboratories, either through designs that vary testing conditions, or by direct statistical analysis of laboratory variation. We previously evaluated our statistical approach for estimating the interlaboratory replicability of a single laboratory discovery. Those results, however, were from a well-coordinated, multi-lab phenotyping study and did not extend to the more realistic setting in which laboratories are operating independently of each other. Here, we sought to test our statistical approach as a realistic prospective experiment, in mice, using 152 results from 5 independent published studies deposited in the Mouse Phenome Database (MPD). In independent replication experiments at 3 laboratories, we found that 53 of the results were replicable, so the other 99 were considered non-replicable. Of the 99 non-replicable results, 59 were statistically significant (at 0.05) in their original single-lab analysis, putting the probability that a single-lab statistical discovery was made even though it is non-replicable, at 59.6%. We then introduced the dimensionless "Genotype-by-Laboratory" (GxL) factor-the ratio between the standard deviations of the GxL interaction and the standard deviation within groups. Using the GxL factor reduced the number of single-lab statistical discoveries and alongside reduced the probability of a non-replicable result to be discovered in the single lab to 12.1%. Such reduction naturally leads to reduced power to make replicable discoveries, but this reduction was small (from 87% to 66%), indicating the small price paid for the large improvement in replicability. Tools and data needed for the above GxL adjustment are publicly available at the MPD and will become increasingly useful as the range of assays and testing conditions in this resource increases.


Subject(s)
Laboratories , Research Design , Animals , Rats , Prospective Studies , Genotype , Databases, Factual
9.
Clin Epigenetics ; 15(1): 45, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36945042

ABSTRACT

BACKGROUND: Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS: Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS: We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.


Subject(s)
Abnormalities, Multiple , Autistic Disorder , Intellectual Disability , Humans , Animals , Mice , Autistic Disorder/genetics , Chromatin , DNA Methylation , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intellectual Disability/genetics , Abnormalities, Multiple/genetics
10.
Eur J Neurosci ; 58(2): 2641-2652, 2023 07.
Article in English | MEDLINE | ID: mdl-36669790

ABSTRACT

NAP (NAPVSIPQ, drug candidate name, davunetide) is the neuroprotective fragment of activity-dependent neuroprotective protein (ADNP). Recent studies identified NAPVSIP as a Src homology 3 (SH3) domain-ligand association site, responsible for controlling signalling pathways regulating the cytoskeleton. Furthermore, the SIP motif in NAP/ADNP was identified as crucial for direct microtubule end-binding protein interaction facilitating microtubule dynamics and Tau microtubule interaction, at the microtubule end-binding protein site EB1 and EB3. Most de novo ADNP mutations reveal heterozygous STOP or frameshift STOP aberrations, driving the autistic/intellectual disability-related ADNP syndrome. Here, we report for the first time on a de novo missense mutation, resulting in ADNP containing NAPVISPQE instead of NAPVSIPQQ, in a child presenting developmental hypotonia, possibly associated with inflammation affecting food intake in early life coupled with fear of peer interactions and suggestive of a novel case of the ADNP syndrome. In silico modelling showed that the mutation Q (polar side chain) to E (negative side chain) affected the electrostatic characteristics of ADNP (reducing, while scattering the electrostatic positive patch). Comparison with the most prevalent pathogenic ADNP mutation, p.Tyr719*, indicated a further reduction in the electrostatic patch. Previously, exogenous NAP partially ameliorated deficits associated with ADNP p.Tyr719* mutations in transfected cells and in CRISPR/Cas9 genome edited cell and mouse models. These findings stress the importance of the NAP sequence in ADNP and as a future putative therapy for the ADNP syndrome.


Subject(s)
Nerve Tissue Proteins , Point Mutation , Mice , Animals , Nerve Tissue Proteins/genetics , Oligopeptides/genetics , Oligopeptides/metabolism , Oligopeptides/therapeutic use , Microtubules/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
11.
Mol Psychiatry ; 28(5): 1946-1959, 2023 May.
Article in English | MEDLINE | ID: mdl-36631597

ABSTRACT

Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.

12.
Cells ; 11(19)2022 09 26.
Article in English | MEDLINE | ID: mdl-36230962

ABSTRACT

(1) Background: Activity-dependent neuroprotective protein (ADNP) is essential for neuronal structure and function. Multiple de novo pathological mutations in ADNP cause the autistic ADNP syndrome, and they have been further suggested to affect Alzheimer's disease progression in a somatic form. Here, we asked if different ADNP mutations produce specific neuronal-like phenotypes toward better understanding and personalized medicine. (2) Methods: We employed CRISPR/Cas9 genome editing in N1E-115 neuroblastoma cells to form neuron-like cell lines expressing ADNP mutant proteins conjugated to GFP. These new cell lines were characterized by quantitative morphology, immunocytochemistry and live cell imaging. (3) Results: Our novel cell lines, constitutively expressing GFP-ADNP p.Pro403 (p.Ser404* human orthologue) and GFP-ADNP p.Tyr718* (p.Tyr719* human orthologue), revealed new and distinct phenotypes. Increased neurite numbers (day 1, in culture) and increased neurite lengths upon differentiation (day 7, in culture) were linked with p.Pro403*. In contrast, p.Tyr718* decreased cell numbers (day 1). These discrete phenotypes were associated with an increased expression of both mutant proteins in the cytoplasm. Reduced nuclear/cytoplasmic boundaries were observed in the p.Tyr718* ADNP-mutant line, with this malformation being corrected by the ADNP-derived fragment drug candidate NAP. (4) Conclusions: Distinct impairments characterize different ADNP mutants and reveal aberrant cytoplasmic-nuclear crosstalk.


Subject(s)
Autistic Disorder , Nerve Tissue Proteins , Autistic Disorder/genetics , Cytoplasm/metabolism , Homeodomain Proteins/metabolism , Humans , Mutant Proteins , Nerve Tissue Proteins/metabolism
13.
J Alzheimers Dis ; 90(2): 475-493, 2022.
Article in English | MEDLINE | ID: mdl-36155518

ABSTRACT

Alzheimer's disease (AD) represents a global health challenge, with an estimated 55 million people suffering from the non-curable disease across the world. While amyloid-ß plaques and tau neurofibrillary tangles in the brain define AD proteinopathy, it has become evident that diverse coding and non-coding regions of the genome may significantly contribute to AD neurodegeneration. The diversity of factors associated with AD pathogenesis, coupled with age-associated damage, suggests that a series of triggering events may be required to initiate AD. Since somatic mutations accumulate with aging, and aging is a major risk factor for AD, there is a great potential for somatic mutational events to drive disease. Indeed, recent data from the Gozes team/laboratories as well as other leading laboratories correlated the accumulation of somatic brain mutations with the progression of tauopathy. In this review, we lay the current perspectives on the principal genetic factors associated with AD and the potential causes, highlighting the contribution of somatic mutations to the pathogenesis of late onset Alzheimer's disease. The roles that artificial intelligence and big data can play in accelerating the progress of causal somatic mutation markers/biomarkers identification, and the associated drug discovery/repurposing, have been highlighted for future AD and other neurodegenerations, with the aim to bring hope for the vulnerable aging population.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Artificial Intelligence , Amyloid beta-Peptides/genetics , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Biomarkers , Mutation/genetics , tau Proteins/genetics
14.
J Mol Neurosci ; 72(8): 1531-1546, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35920977

ABSTRACT

Activity-dependent neuroprotective protein (ADNP) is one of the lead genes in autism spectrum disorder/intellectual disability. Heterozygous, de novo ADNP mutations cause the ADNP syndrome. Here, to evaluate natural history of the syndrome, mothers of two ADNP syndrome boys aged 6 and a half and two adults aged 27 years (man and woman) were subjected to Vineland III questionnaire assessing adaptive behavior. The boys were assessed again about 2 years after the first measurements. The skill measures, presented as standard scores (SS) included domains of communication, daily living, socialization, motor skills and a sum of adaptive behavior composite. The age equivalent (AE) and growth scale values (GSV) encompassing 11 subdomains assess the age level at which the subject's raw score is found at a norm sample median and the individual temporal progression, respectively. The norm referenced standard scores age-matched, mean 100 ± 15 of the two children showed the lowest outcome in communication (SS: 20-30). Daily living skills presented SS of 50-60, with a possible potential loss of some activities as the child ages, especially in interpersonal relationships with people outside of the immediate family (boy A). In contrast, in socialization, both children were at the SS of 38, with some positive increase to SS of ~ 45 (interpersonal relations with family members and coping skills, depending on the particular individual), 2 years later. Interestingly, there was an apparent large difference in motor skills (gross and fine) at the young age, with subject B showing a relatively higher level of skills (SS: 70), decreasing to subject A level (SS: 40) 2 years later. Together, the adaptive behavior composite suggested a level of SS: 39-48 with B showing a potential increase (SS: 41-44) and A, a substantial decrease (SS: 48-39), suggesting a strong impact of daily living skills. Adults were at SS: 20, which is the lowest possible score. AE showed minor improvements for subject A and B, with all AE values being below 3 years. GSVs for subject A showed some improvement with age, especially in interpersonal, play and leisure, and gross motor subdomains. GSV for subject B showed minor improvements in the various subdomains. Notably, all subjects showed a percentile rank < 1 compared with age-matched norms except for subject B as to motor domain (2nd percentile) at the age of 6 years. In summary, the results, especially comparing SS and AEs between childhood and adulthood, implied a continuous deterioration of activities compared to the general population, encompassing a slower developmental process coupled to possible neurodegeneration, strongly supporting a great need for disease modifying medicinal procedures.


Subject(s)
Activities of Daily Living , Autism Spectrum Disorder , Adaptation, Psychological , Adult , Autism Spectrum Disorder/genetics , Child , Female , Homeodomain Proteins , Humans , Male , Motor Skills , Nerve Tissue Proteins , Socialization , Syndrome
15.
Drug Dev Res ; 83(6): 1419-1424, 2022 09.
Article in English | MEDLINE | ID: mdl-35774024

ABSTRACT

With increased life expectancies in developed countries, cancer rates are becoming more common among the elderly. Cancer is typically driven by a combination of germline and somatic mutations accumulating during an individual's lifetime. Yet, many centenarians reach exceptionally old age without experiencing cancer. It was suggested that centenarians have more robust DNA repair and mitochondrial function, allowing improved maintenance of DNA stability. In this study, we applied real-time quantitative PCR to examine the expression of ATM in lymphoblastoid cell lines (LCLs) from 15 healthy female centenarians and 24 younger female donors aged 21-88 years. We observed higher ATM mRNA expression of in LCLs from female centenarians compared with both women aged 21-48 years (FD = 2.0, p = .0016) and women aged 56-88 years (FD = 1.8, p = .0094. Positive correlation was found between ATM mRNA expression and donors age (p = .0028). Levels of hsa-miR-181a-5p, which targets ATM, were lower in LCLs from centenarians compared with younger women. Our findings suggest a role for ATM in protection from age-related diseases, possibly reflecting more effective DNA repair, thereby reducing somatic mutation accumulation during aging. Further studies are required for analyzing additional DNA repair pathways in biosamples from centenarians and younger age men and women.


Subject(s)
Aging , Ataxia Telangiectasia Mutated Proteins/metabolism , Centenarians , Aged , Aged, 80 and over , Aging/physiology , Cell Line , Female , Humans , RNA, Messenger/genetics
17.
Mol Psychiatry ; 27(11): 4590-4598, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35864319

ABSTRACT

Post-traumatic stress disorder (PTSD) represents a global public health concern, affecting about 1 in 20 individuals. The symptoms of PTSD include intrusiveness (involuntary nightmares or flashbacks), avoidance of traumatic memories, negative alterations in cognition and mood (such as negative beliefs about oneself or social detachment), increased arousal and reactivity with irritable reckless behavior, concentration problems, and sleep disturbances. PTSD is also highly comorbid with anxiety, depression, and substance abuse. To advance the field from subjective, self-reported psychological measurements to objective molecular biomarkers while considering environmental influences, we examined a unique cohort of Israeli veterans who participated in the 1982 Lebanon war. Non-invasive oral 16S RNA sequencing was correlated with psychological phenotyping. Thus, a microbiota signature (i.e., decreased levels of the bacteria sp_HMT_914, 332 and 871 and Noxia) was correlated with PTSD severity, as exemplified by intrusiveness, arousal, and reactivity, as well as additional psychopathological symptoms, including anxiety, hostility, memory difficulties, and idiopathic pain. In contrast, education duration correlated with significantly increased levels of sp_HMT_871 and decreased levels of Bacteroidetes and Firmicutes, and presented an inverted correlation with adverse psychopathological measures. Air pollution was positively correlated with PTSD symptoms, psychopathological symptoms, and microbiota composition. Arousal and reactivity symptoms were correlated with reductions in transaldolase, an enzyme controlling a major cellular energy pathway, that potentially accelerates aging. In conclusion, the newly discovered bacterial signature, whether an outcome or a consequence of PTSD, could allow for objective soldier deployment and stratification according to decreases in sp_HMT_914, 332, 871, and Noxia levels, coupled with increases in Bacteroidetes levels. These findings also raise the possibility of microbiota pathway-related non-intrusive treatments for PTSD.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Humans , Stress Disorders, Post-Traumatic/psychology , Veterans/psychology , Anxiety , Comorbidity
18.
Mol Psychiatry ; 27(8): 3316-3327, 2022 08.
Article in English | MEDLINE | ID: mdl-35538192

ABSTRACT

De novo heterozygous mutations in activity-dependent neuroprotective protein (ADNP) cause autistic ADNP syndrome. ADNP mutations impair microtubule (MT) function, essential for synaptic activity. The ADNP MT-associating fragment NAPVSIPQ (called NAP) contains an MT end-binding protein interacting domain, SxIP (mimicking the active-peptide, SKIP). We hypothesized that not all ADNP mutations are similarly deleterious and that the NAPV portion of NAPVSIPQ is biologically active. Using the eukaryotic linear motif (ELM) resource, we identified a Src homology 3 (SH3) domain-ligand association site in NAP responsible for controlling signaling pathways regulating the cytoskeleton, namely NAPVSIP. Altogether, we mapped multiple SH3-binding sites in ADNP. Comparisons of the effects of ADNP mutations p.Glu830synfs*83, p.Lys408Valfs*31, p.Ser404* on MT dynamics and Tau interactions (live-cell fluorescence-microscopy) suggested spared toxic function in p.Lys408Valfs*31, with a regained SH3-binding motif due to the frameshift insertion. Site-directed-mutagenesis, abolishing the p.Lys408Valfs*31 SH3-binding motif, produced MT toxicity. NAP normalized MT activities in the face of all ADNP mutations, although, SKIP, missing the SH3-binding motif, showed reduced efficacy in terms of MT-Tau interactions, as compared with NAP. Lastly, SH3 and multiple ankyrin repeat domains protein 3 (SHANK3), a major autism gene product, interact with the cytoskeleton through an actin-binding motif to modify behavior. Similarly, ELM analysis identified an actin-binding site on ADNP, suggesting direct SH3 and indirect SHANK3/ADNP associations. Actin co-immunoprecipitations from mouse brain extracts showed NAP-mediated normalization of Shank3-Adnp-actin interactions. Furthermore, NAP treatment ameliorated aberrant behavior in mice homozygous for the Shank3 ASD-linked InsG3680 mutation, revealing a fundamental shared mechanism between ADNP and SHANK3.


Subject(s)
Autistic Disorder , Homeodomain Proteins , Microfilament Proteins , Nerve Tissue Proteins , Animals , Mice , Actins , Autistic Disorder/metabolism , Homeodomain Proteins/genetics , Microfilament Proteins/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
20.
Biol Psychiatry ; 92(1): 81-95, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34865853

ABSTRACT

BACKGROUND: ADNP is essential for embryonic development. As such, de novo ADNP mutations lead to an intractable autism/intellectual disability syndrome requiring investigation. METHODS: Mimicking humans, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 editing produced mice carrying heterozygous Adnp p.Tyr718∗ (Tyr), a paralog of the most common ADNP syndrome mutation. Phenotypic rescue was validated by treatment with the microtubule/autophagy-protective ADNP fragment NAPVSIPQ (NAP). RESULTS: RNA sequencing of spleens, representing a peripheral biomarker source, revealed Tyr-specific sex differences (e.g., cell cycle), accentuated in females (with significant effects on antigen processing and cellular senescence) and corrected by NAP. Differentially expressed, NAP-correctable transcripts, including the autophagy and microbiome resilience-linked FOXO3, were also deregulated in human patient-derived ADNP-mutated lymphoblastoid cells. There were also Tyr sex-specific microbiota signatures. Phenotypically, Tyr mice, similar to patients with ADNP syndrome, exhibited delayed development coupled with sex-dependent gait defects. Speech acquisition delays paralleled sex-specific mouse syntax abnormalities. Anatomically, dendritic spine densities/morphologies were decreased with NAP amelioration. These findings were replicated in the Adnp+/- mouse, including Foxo3 deregulation, required for dendritic spine formation. Grooming duration and nociception threshold (autistic traits) were significantly affected only in males. Early-onset tauopathy was accentuated in males (hippocampus and visual cortex), mimicking humans, and was paralleled by impaired visual evoked potentials and correction by acute NAP treatment. CONCLUSIONS: Tyr mice model ADNP syndrome pathology. The newly discovered ADNP/NAP target FOXO3 controls the autophagy initiator LC3 (microtubule-associated protein 1 light chain 3), with known ADNP binding to LC3 augmented by NAP, protecting against tauopathy. NAP amelioration attests to specificity, with potential for drug development targeting accessible biomarkers.


Subject(s)
Autistic Disorder , Intellectual Disability , Tauopathies , Animals , Autistic Disorder/pathology , Brain/metabolism , Evoked Potentials, Visual , Female , Gene Expression , Homeodomain Proteins/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Male , Mice , Nerve Tissue Proteins/genetics , Tauopathies/metabolism , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...