Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 12: 611704, 2021.
Article in English | MEDLINE | ID: mdl-33584615

ABSTRACT

Pterocarpus angolensis, a leguminous tree native to the dry woodlands of Southern Africa, provides valuable timber, but is threatened by land conversion and overharvesting while showing limited natural regeneration. Nitrogen-fixing root nodule symbionts that could improve establishment of young seedlings have not yet been described. Therefore, we investigated the ability of P. angolensis to form nodules with a diverse range of rhizobia. In drought-prone areas under climate change with higher temperatures, inoculants that are heat-tolerant and adapted to these conditions are likely to be of advantage. Sources of bacterial isolates were roots of P. angolensis from nurseries in the Kavango region, other shrubs from this area growing near Pterocarpus such as Indigofera rautanenii, Desmodium barbatum, Chamaecrista sp., or shrubs from drought-prone areas in Namaqualand (Wiborgia monoptera, Leobordea digitata) or Kalahari (Indigofera alternans). Only slight protrusions were observed on P. angolensis roots, from which a non-nodulating Microbacterium sp. was isolated. Rhizobia that were isolated from nodules of other shrubs were affiliated to Bradyrhizobium ripae WR4T, Bradyrhizobium spp. (WR23/WR74/WR93/WR96), or Ensifer/Mesorhizobium (WR41/WR52). As many plant growth-promoting rhizobacteria (PGPR), nodule isolates produced siderophores and solubilized phosphate. Among them, only the Bradyrhizobium strains nodulated P. angolensis under controlled conditions in the laboratory. Isolates were further characterized by multilocus sequence analysis and were found to be distant from known Bradyrhizobium species. Among additional reference species tested for nodulation on P. angolensis, Bradyrhizobium vignae 7-2T and Bradyrhizobium namibiense 5-10T from the Kavango region of Namibia as well as Bradyrhizobium elkanii LMG6234T and Bradyrhizobium yuanmingense LMG21728T induced nitrogen-fixing nodules, while Bradyrhizobium diazoefficiens USDA110T and Bradyrhizobium tropiciagri SEMIA6148T did not. This suggests a broad microsymbiont range from Bradyrhizobium japonicum and B. elkanii lineages. Phylogenetic analysis of nodC genes indicated that nodulating bradyrhizobia did not belong to a specific symbiovar. Also, for I. rautanenii and Wiborgia, nodule isolates B. ripae WR4T or Mesorhizobium sp. WR52, respectively, were authenticated. Characterization of symbionts inducing effective root nodules in P. angolensis and other shrubs from Subsahara Africa (SSA) give insights in their symbiotic partners for the first time and might help in future to develop bioinoculants for young seedlings in nurseries, and for reforestation efforts in Southern Africa.

2.
Front Microbiol ; 9: 2194, 2018.
Article in English | MEDLINE | ID: mdl-30294308

ABSTRACT

Making use of biological nitrogen fixation (BNF) with pulses and green manure legumes can help to alleviate nitrogen deficiencies and increase soil fertility, problems faced particularly in smallholder agriculture in Subsahara Africa (SSA). The isolation of indigenous rhizobia provides a basis for the formulation of rhizobial inoculants. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Here we discuss global species discovery of Bradyrhizobium spp. Although recently the number of validly published Bradyrhizobium species is rapidly increasing, their diversity in SSA is not well-represented. We summarize the recent knowledge on species diversity in the Bradyrhizobium yuanmingense lineage to which most SSA isolates belong, and their biogeographic distribution and adaptations. Most indigenous rhizobia appear to differ from species found on other continents. We stress that an as yet hidden diversity may be a rich resource for inoculant development in future. As some species are exceptionally temperature tolerant, they may be potential biofertilizer candidates for global warming scenarios.

3.
Int J Syst Evol Microbiol ; 68(12): 3688-3695, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30247121

ABSTRACT

Root-nodule bacteria were isolated from wild legumes growing in the Kavango region, Namibia. Using a polyphasic approach, four strains belonging to the genus Bradyrhizobium (WR4T, WR87, T10 and T12) were further characterized to clarify the taxonomic status of this group. On the basis of 16S rRNA gene sequences, the four strains showed highest similarity to Bradyrhizobium elkanii USDA 76T (99.9 %), Bradyrhizobium pachyrhizi PAC48T (identical) and to Bradyrhizobiumbrasilense UFLA03-321T (identical). Multilocus sequence analysis of concatenated glnII-recA-gyrB-dnaK-rpoB sequences and comparison of the intergenic transcribed spacer (ITS) sequences confirmed that the novel group belongs to a distinct lineage of the genus Bradyrhizobium, with <96.7 % (MLSA) and 97.25 % (ITS) nucleotide identity with B. elkanii USDA 76T. Results from the sequence-based analysis were validated by DNA-DNA hybridization experiments and suggested a novel species. Several phenotypic features including carbon compound utilization and growth characteristics supported the phylogenetic data, thus it is concluded that the strains represent a novel species, for which the name Bradyrhizobium ripae sp. nov. is proposed, with type strain WR4T [LMG 30283, DSM 105795, NTCCM 0019 (Windhoek)].


Subject(s)
Bradyrhizobium/classification , Fabaceae/microbiology , Nitrogen Fixation , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , DNA, Bacterial/genetics , DNA, Intergenic/genetics , Genes, Bacterial , Multilocus Sequence Typing , Namibia , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
4.
Int J Syst Evol Microbiol ; 67(12): 4884-4891, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29034855

ABSTRACT

Four strains of symbiotic bacteria from root nodules of hyacinth bean (Lablab purpureus (L.) Sweet) from Namibia were previously identified as a novel group within the genus Bradyrhizobium. To confirm their taxonomic status, these strains were further characterized by taking a polyphasic approach. The type strain possessed 16S rRNA gene sequences identical to Bradyrhizobium paxllaeri LMTR 21T and Bradyrhizobiumicense LMTR 13T, the full-length sequences were identical to those retrieved from SAMN05230119 and SAMN05230120, respectively. However, the intergenic spacer sequences of the novel group showed identities of less than 93.1 % to described Bradyrhizobium species and were placed in a well-supported separate lineage in the phylogenetic tree. Phylogenetic analyses of six concatenated housekeeping genes, recA, glnII, gyrB, dnaK, atpD and rpoB, corroborated that the novel strains belonged to a lineage distinct from named species of the genus Bradyrhizobium, with highest sequence identities to Bradyrhizobiumjicamae and B. paxllaeri (below 93 %). The species status was validated by results of DNA-DNA hybridization and average nucleotide identity values of genome sequences. The combination of phenotypic characteristics from several tests, including carbon source utilization and antibiotic resistance, could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Phylogenetic analysis of nodC and nifH genes placed the novel strains in a group with B. paxllaeri and B.lablabi. Novel strain 5-10T induces effective nodules on Lablab purpureus, Vigna subterranea, Vigna unguiculata and Arachis hypogaea. Based on our results, we conclude that our strains represent a novel species for which the name Bradyrhizobium namibiense sp. nov. is proposed, with type strain 5-10T[LMG 28789, DSM 100300, NTCCM0017 (Windhoek)].


Subject(s)
Bradyrhizobium/classification , Fabaceae/microbiology , Nitrogen Fixation , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , DNA, Bacterial/genetics , Genes, Bacterial , Namibia , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
5.
FEMS Microbiol Ecol ; 92(6): fiw083, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27118727

ABSTRACT

Marama bean (Tylosema esculentum) is an indigenous non-nodulating legume to the arid agro-ecological parts of Southern Africa. It is a staple food for the Khoisan and Bantu people from these areas. It is intriguing how it is able to synthesize the high-protein content in the seeds since its natural habitat is nitrogen deficient. The aim of the study was to determine the presence of seed transmittable bacterial endophytes that may have growth promoting effects, which may be particularly important for the harsh conditions. Marama bean seeds were surface sterilized and gnotobiotically grown to 2 weeks old seedlings. From surface-sterilized shoots and roots, 123 distinct bacterial isolates were cultured using three media, and identified by BOX-PCR fingerprinting and sequence analyses of the 16S rRNA and nifH genes. Phylogenetic analyses of 73 putative endophytes assigned them to bacterial species from 14 genera including Proteobacteria (Rhizobium, Massilia, Kosakonia, Pseudorhodoferax, Caulobacter, Pantoea, Sphingomonas, Burkholderia, Methylobacterium), Firmicutes (Bacillus), Actinobacteria (Curtobacterium, Microbacterium) and Bacteroidetes (Mucilaginibacter, Chitinophaga). Screening for plant growth-promoting activities revealed that the isolates showed production of IAA, ACC deaminase, siderophores, endoglucanase, protease, AHLs and capacities to solubilize phosphate and fix nitrogen. This is the first report that marama bean seeds may harbor endophytes that can be cultivated from seedlings; in this community of bacteria, physiological characteristics that are potentially plant growth promoting are widespread.


Subject(s)
Bacteria/metabolism , Endophytes/classification , Fabaceae/microbiology , Plant Roots/microbiology , Seedlings/microbiology , Africa, Southern , Bacteria/genetics , Carbon-Carbon Lyases/metabolism , Ecology , Ecosystem , Endophytes/genetics , Endophytes/isolation & purification , Fabaceae/growth & development , Glucan Endo-1,3-beta-D-Glucosidase/metabolism , Oxidoreductases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Seeds/microbiology
6.
Int J Syst Evol Microbiol ; 66(1): 62-69, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26463703

ABSTRACT

Twenty one strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata), Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region of Namibia, were previously characterized as a novel group within the genus Bradyrhizobium. To verify their taxonomic position, the strains were further analysed using a polyphasic approach. 16S rRNA gene sequences were most similar to Bradyrhizobium manausense BR 3351T, with Bradyrhizobium ganzhouense RITF806T being the most closely related type strain in the phylogenetic analysis, and Bradyrhizobium yuanmingense CCBAU 10071T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from species of the genus Bradyrhizobium with validly published names; they were most closely related to Bradyrhizobium subterraneum 58 2-1T. The status of the species was validated by results of DNA-DNA hybridization. The combination of phenotypic characteristics from several tests, including carbon source utilization and antibiotic resistance, could be used to differentiate representative strains of species of the genus Bradyrhizobium with validly published names. Novel strain 7-2T induced effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and on Lablab purpureus. The DNA G+C content of strain 7-2T was 65.4 mol% (Tm). Based on the data presented, we conclude that these strains represent a novel species for which the name Bradyrhizobium vignae sp. nov. is proposed, with strain 7-2T [LMG 28791T, DSMZ 100297T, NTCCM0018T (Windhoek)] as the type strain.


Subject(s)
Arachis/microbiology , Bradyrhizobium/classification , Fabaceae/microbiology , Nitrogen Fixation , Phylogeny , Symbiosis , Bacterial Typing Techniques , Base Composition , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Namibia , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA
7.
Int J Syst Evol Microbiol ; 65(10): 3241-3247, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26198108

ABSTRACT

Seven strains of symbiotic bacteria from root nodules of local races of Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To corroborate their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences with Bradyrhizobium yuanmingense CCBAU 10071T being the most closely related type strain in the 16S rRNA gene phylogenetic analysis, and Bradyrhizobium daqingense CCBAU 15774T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from named species of the genus Bradyrhizobium, most closely related to Bradyrhizobium yuanmingense CCBAU 10071T. The species status was validated by results of DNA­DNA hybridization. Phylogenetic analysis of nifH genes placed the novel strains in a group with nifH of 'Bradyrhizobium arachidis' CCBAU 051107 that also nodulates peanuts. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 58 2-1T induced effective nodules on V. subterranea, Vigna unguiculata and A. hypogaea, and some strains on Lablab purpureus. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium subterraneum sp. nov. is proposed, with 58 2-1T [ = DSM 100298T = LMG 28792T = NTCCM0016T (Windhoek)] as the type strain. The DNA G+C content of strain 58 2-1T was 64.7 mol% (T m).


Subject(s)
Arachis/microbiology , Bradyrhizobium/classification , Nitrogen Fixation , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Namibia , Nitrogen , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
8.
FEMS Microbiol Ecol ; 91(4)2015 Apr.
Article in English | MEDLINE | ID: mdl-25873605

ABSTRACT

Colophospermum mopane is an indigenous legume tree that grows in Southern Africa and is one of the predominant trees of the woodland vegetation. In order to increase knowledge about its ecology, especially how C. mopane thrives in the nitrogen-poor soils of the region, we analyzed the root-associated bacteria to assess the active diazotrophic diversity and total microbial diversity by culture-dependent and independent techniques. Root nodules were not detected but in some samples the lateral roots showed an outgrowth-like protuberance, that were not likely to have functions related to legume root nodules. The bacterial isolates recovered were related to Actinobacteria, Firmicutes and Proteobacteria. The total microbial diversity was dominated by Actinobacteria-related phylotypes, while the active diazotrophic diversity showed that the majority of the sequences were related to the order Rhizobiales but also to Spirochaetes, Firmicutes, Bacteroidetes and Deltaproteobacteria. Several isolates showed characteristics of plant growth-promoting bacteria. These findings increase the spectrum of possible phylotypes that can be found in legume trees that are typically nodulated by Alpha- and Betaproteobacteria, and reveal for the first time a surprising diversity of nitrogen-fixing bacteria active in legume tree roots.


Subject(s)
Actinobacteria/genetics , Bacteroidetes/genetics , Fabaceae/microbiology , Plant Roots/microbiology , Proteobacteria/genetics , Actinobacteria/isolation & purification , Africa, Southern , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Base Sequence , Biodiversity , DNA, Bacterial/genetics , Nitrogen Fixation/physiology , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL