Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Eur J Paediatr Neurol ; 49: 141-154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38554683

ABSTRACT

INTRODUCTION: Metachromatic leukodystrophy (MLD) is a rare autosomal recessive lysosomal storage disorder resulting from arylsulfatase A enzyme deficiency, leading to toxic sulfatide accumulation. As a result affected individuals exhibit progressive neurodegeneration. Treatments such as hematopoietic stem cell transplantation (HSCT) and gene therapy are effective when administered pre-symptomatically. Newborn screening (NBS) for MLD has recently been shown to be technically feasible and is indicated because of available treatment options. However, there is a lack of guidance on how to monitor and manage identified cases. This study aims to establish consensus among international experts in MLD and patient advocates on clinical management for NBS-identified MLD cases. METHODS: A real-time Delphi procedure using eDELPHI software with 22 experts in MLD was performed. Questions, based on a literature review and workshops, were answered during a seven-week period. Three levels of consensus were defined: A) 100%, B) 75-99%, and C) 50-74% or >75% but >25% neutral votes. Recommendations were categorized by agreement level, from strongly recommended to suggested. Patient advocates participated in discussions and were involved in the final consensus. RESULTS: The study presents 57 statements guiding clinical management of NBS-identified MLD patients. Key recommendations include timely communication by MLD experts with identified families, treating early-onset MLD with gene therapy and late-onset MLD with HSCT, as well as pre-treatment monitoring schemes. Specific knowledge gaps were identified, urging prioritized research for future evidence-based guidelines. DISCUSSION: Consensus-based recommendations for NBS in MLD will enhance harmonized management and facilitate integration in national screening programs. Structured data collection and monitoring of screening programs are crucial for evidence generation and future guideline development. Involving patient representatives in the development of recommendations seems essential for NBS programs.


Subject(s)
Leukodystrophy, Metachromatic , Neonatal Screening , Humans , Leukodystrophy, Metachromatic/therapy , Leukodystrophy, Metachromatic/diagnosis , Infant, Newborn , Neonatal Screening/methods , Neonatal Screening/standards , Delphi Technique , Europe , Consensus
2.
Orphanet J Rare Dis ; 19(1): 46, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326898

ABSTRACT

BACKGROUND: For decades, early allogeneic stem cell transplantation (HSCT) has been used to slow neurological decline in metachromatic leukodystrophy (MLD). There is lack of consensus regarding who may benefit, and guidelines are lacking. Clinical practice relies on limited literature and expert opinions. The European Reference Network for Rare Neurological Diseases (ERN-RND) and the MLD initiative facilitate expert panels for treatment advice, but some countries are underrepresented. This study explores organizational and clinical HSCT practices for MLD in Europe and neighboring countries to enhance optimization and harmonization of cross-border MLD care. METHODS: A web-based EUSurvey was distributed through the ERN-RND and the European Society for Blood and Marrow Transplantation Inborn Errors Working Party. Personal invitations were sent to 89 physicians (43 countries) with neurological/metabolic/hematological expertise. The results were analyzed and visualized using Microsoft Excel and IBM SPSS statistics. RESULTS: Of the 30 countries represented by 42 respondents, 23 countries offer HSCT for MLD. The treatment is usually available in 1-3 centers per country (18/23, 78%). Most countries have no or very few MLD patients transplanted during the past 1-5 years. The eligibility criteria regarding MLD subtype, motor function, IQ, and MRI largely differ across countries. CONCLUSION: HSCT for MLD is available in most European countries, but uncertainties exist in Eastern and South-Eastern Europe. Applied eligibility criteria and management vary and may not align with the latest scientific insights, indicating physicians' struggle in providing evidence-based care. Interaction between local physicians and international experts is crucial for adequate treatment decision-making and cross-border care in the rapidly changing MLD field.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukodystrophy, Metachromatic , Humans , Leukodystrophy, Metachromatic/therapy , Hematopoietic Stem Cell Transplantation/methods , Europe , Magnetic Resonance Imaging , Consensus
3.
Mol Genet Metab ; 140(4): 107734, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979237

ABSTRACT

X-linked adrenoleukodystrophy (XALD) is the most common leukodystrophy. It has an estimated incidence of around 1/17.000, and a variable phenotype. Following the passage of Aidens Law, New York became the first state to implement a newborn screening for XALD in 2013. Since then, 38 American states, Taiwan, and the Netherlands have included XALD in their NBS program, and Japan and Italy have ongoing pilot studies. Screening for XALD allows for early, potentially lifesaving treatment of adrenal insufficiency and cerebral demyelination but is also a complex subject, due to our limited understanding of the natural history and lack of prognostic biomarkers. Screening protocols and algorithms vary between countries and states, and results and experiences gained so far are important for the future implementation of XALD NBS in other countries. In this review, we have examined the algorithms, methodologies, and outcomes used, as well as how common challenges are addressed in countries/states that have experience using NBS for XALD. We identified 14 peer-reviewed reports on NBS for XALD. All studies presented methods for detecting XALD at birth by NBS using a combination of mass spectrometry and ABCD1 gene sequencing. This has allowed for early surveillance of presymptomatic XALD patients, and the possibility for early detection and timely treatment of XALD manifestations. Obstacles to NBS for XALD include how to deal with variants of unknown significance, whether to screen females, and the ethical concerns of an NBS for a disease where we have limited understanding of natural history and phenotype/genotype correlation.


Subject(s)
Adrenal Insufficiency , Adrenoleukodystrophy , Infant, Newborn , Female , Humans , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/genetics , Neonatal Screening/methods , Adrenal Insufficiency/diagnosis , New York , Genetic Association Studies
4.
Mol Genet Metab ; 140(3): 107694, 2023 11.
Article in English | MEDLINE | ID: mdl-37708665

ABSTRACT

Creatine transporter deficiency (CTD), caused by pathogenic variants in SLC6A8, is the second most common cause of X-linked intellectual disability. Symptoms include intellectual disability, epilepsy, and behavioral disorders and are caused by reduced cerebral creatine levels. Targeted treatment with oral supplementation is available, however the treatment efficacy is still being investigated. There are clinical and theoretical indications that heterozygous females with CTD respond better to supplementation treatment than hemizygous males. Unfortunately, heterozygous females with CTD often have more subtle and uncharacteristic clinical and biochemical phenotypes, rendering diagnosis more difficult. We report a new female case who presented with learning disabilities and seizures. After determining the diagnosis with molecular genetic testing confirmed by proton magnetic resonance spectroscopy (1H-MRS), the patient was treated with supplementation treatment including creatine, arginine, and glycine. After 28 months of treatment, the patient showed prominent clinical improvement and increased creatine levels in the brain. Furthermore, we provide a review of the 32 female cases reported in the current literature including a description of phenotypes, genotypes, diagnostic approaches, and effects of supplementation treatment. Based on this, we find that supplementation treatment should be tested in heterozygous female patients with CTD, and a prospective treatment underlines the importance of diagnosing these patients. The diagnosis should be suspected in a broad clinical spectrum of female patients and can only be made by molecular genetic testing. 1H-MRS of cerebral creatine levels is essential for establishing the diagnosis in females, and especially valuable when assessing variants of unknown significance.


Subject(s)
Brain Diseases, Metabolic, Inborn , Intellectual Disability , Mental Retardation, X-Linked , Male , Humans , Female , Intellectual Disability/genetics , Creatine , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/drug therapy , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Nerve Tissue Proteins
5.
J Med Genet ; 60(12): 1224-1234, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37586838

ABSTRACT

BACKGROUND: KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/diagnostic imaging , Bone Diseases, Developmental/genetics , Tooth Abnormalities/diagnostic imaging , Tooth Abnormalities/genetics , Facies , Phenotype , Repressor Proteins/genetics , Transcription Factors , Neuroimaging
6.
Hum Mol Genet ; 32(15): 2441-2454, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37133451

ABSTRACT

MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , Leigh Disease/genetics , Leigh Disease/pathology , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Multiomics , Mutation , Ribosomal Proteins/genetics
7.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055214

ABSTRACT

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Subject(s)
Calcium-Binding Proteins , Mitochondrial Diseases , Calcium-Binding Proteins/genetics , Homeostasis/genetics , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nervous System/metabolism , Saccharomyces cerevisiae/metabolism
8.
Mol Genet Metab ; 135(4): 350-356, 2022 04.
Article in English | MEDLINE | ID: mdl-35279367

ABSTRACT

BACKGROUND: Seventy-five percent of patients with pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency (PDE-ALDH7A1) suffer intellectual developmental disability despite pyridoxine treatment. Adjunct lysine reduction therapies (LRT), aimed at lowering putative neurotoxic metabolites, are associated with improved cognitive outcomes. However, possibly due to timing of treatment, not all patients have normal intellectual function. METHODS: This retrospective, multi-center cohort study evaluated the effect of timing of pyridoxine monotherapy and pyridoxine with adjunct LRT on neurodevelopmental outcome. Patients with confirmed PDE-ALDH7A1 with at least one sibling with PDE-ALDH7A1 and a difference in age at treatment initiation were eligible and identified via the international PDE registry, resulting in thirty-seven patients of 18 families. Treatment regimen was pyridoxine monotherapy in ten families and pyridoxine with adjunct LRT in the other eight. Primary endpoints were standardized and clinically assessed neurodevelopmental outcomes. Clinical neurodevelopmental status was subjectively assessed over seven domains: overall neurodevelopment, speech/language, cognition, fine and gross motor skills, activities of daily living and behavioral/psychiatric abnormalities. RESULTS: The majority of early treated siblings on pyridoxine monotherapy performed better than their late treated siblings on the clinically assessed domain of fine motor skills. For siblings on pyridoxine and adjunct LRT, the majority of early treated siblings performed better on clinically assessed overall neurodevelopment, cognition, and behavior/psychiatry. Fourteen percent of the total cohort was assessed as normal on all domains. CONCLUSION: Early treatment with pyridoxine and adjunct LRT may be beneficial for neurodevelopmental outcome. When evaluating a more extensive neurodevelopmental assessment, the actual impairment rate may be higher than the 75% reported in literature. TAKE- HOME MESSAGE: Early initiation of lysine reduction therapies adjunct to pyridoxine treatment in patients with PDE-ALDH7A1 may result in an improved neurodevelopmental outcome.


Subject(s)
Lysine , Pyridoxine , Activities of Daily Living , Cohort Studies , Epilepsy , Humans , Pyridoxine/therapeutic use , Retrospective Studies
9.
Orphanet J Rare Dis ; 17(1): 48, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35164810

ABSTRACT

BACKGROUND: Metachromatic Leukodystrophy (MLD) is a rare lysosomal disorder. Patients suffer from relentless neurological deterioration leading to premature death. Recently, new treatment modalities, including gene therapy and enzyme replacement therapy, have been developed. Those advances increase the need for high-quality research infrastructure to adequately compare treatments, execute post-marketing surveillance, and perform health technology assessments (HTA). To facilitate this, a group of MLD experts started the MLD initiative (MLDi) and initiated an academia-led European MLD registry: the MLDi. An expert-based consensus procedure, namely a modified Delphi procedure, was used to determine the data elements required to answer academic, regulatory, and HTA research questions. RESULTS: Three distinct sets of data elements were defined by the 13-member expert panel. The minimal set (n = 13) contained demographics and basic disease characteristics. The core set (n = 55) included functional status scores in terms of motor, manual, speech and eating abilities, and causal and supportive treatment characteristics. Health-related quality of life scores were included that were also deemed necessary for HTA. The optional set (n = 31) contained additional clinical aspects, such as findings at neurological examination, detailed motor function, presence of peripheral neuropathy, gall bladder involvement and micturition. CONCLUSION: Using a modified Delphi procedure with physicians from the main expert centers, consensus was reached on a core set of data that can be collected retrospectively and prospectively. With this consensus-based approach, an important step towards harmonization was made. This unique dataset will support knowledge about the disease and facilitate regulatory requirements related to the launch of new treatments.


Subject(s)
Leukodystrophy, Metachromatic , Consensus , Humans , Leukodystrophy, Metachromatic/genetics , Quality of Life , Registries , Retrospective Studies
10.
J Inherit Metab Dis ; 44(6): 1463-1480, 2021 11.
Article in English | MEDLINE | ID: mdl-34418116

ABSTRACT

Niemann-Pick disease type C (NPC) is a rare, genetic, progressive neurodegenerative disorder with high unmet medical need. We investigated the safety and efficacy of arimoclomol, which amplifies the heat shock response to target NPC protein misfolding and improve lysosomal function, in patients with NPC. In a 12-month, prospective, randomised, double-blind, placebo-controlled, phase 2/3 trial (ClinicalTrials.gov identifier: NCT02612129), patients (2-18 years) were randomised 2:1 to arimoclomol:placebo, stratified by miglustat use. Routine clinical care was maintained. Arimoclomol was administered orally three times daily. The primary endpoint was change in 5-domain NPC Clinical Severity Scale (NPCCSS) score from baseline to 12 months. Fifty patients enrolled; 42 completed. At month 12, the mean progression from baseline in the 5-domain NPCCSS was 0.76 with arimoclomol vs 2.15 with placebo. A statistically significant treatment difference in favour of arimoclomol of -1.40 (95% confidence interval: -2.76, -0.03; P = .046) was observed, corresponding to a 65% reduction in annual disease progression. In the prespecified subgroup of patients receiving miglustat as routine care, arimoclomol resulted in stabilisation of disease severity over 12 months with a treatment difference of -2.06 in favour of arimoclomol (P = .006). Adverse events occurred in 30/34 patients (88.2%) receiving arimoclomol and 12/16 (75.0%) receiving placebo. Fewer patients had serious adverse events with arimoclomol (5/34, 14.7%) vs placebo (5/16, 31.3%). Treatment-related serious adverse events (n = 2) included urticaria and angioedema. Arimoclomol provided a significant and clinically meaningful treatment effect in NPC and was well tolerated.


Subject(s)
Hydroxylamines/therapeutic use , Niemann-Pick Disease, Type C/drug therapy , Adolescent , Child , Child, Preschool , Disease Progression , Double-Blind Method , Female , Humans , Hydroxylamines/adverse effects , Internationality , Male , Niemann-Pick Disease, Type C/genetics , Prospective Studies , Severity of Illness Index , Treatment Outcome , Young Adult
11.
Mol Genet Metab Rep ; 28: 100782, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34285876

ABSTRACT

BACKGROUND: Mitochondrial alanyl-tRNA synthetase 2 gene (AARS2) related disease is a rare genetic disorder affecting mitochondrial metabolism, leading to severe cardiac disease in infants or progressive leukodystrophy in young adults. The disease is considered ultra-rare with only 39 cases of AARS2-leukodystrophy previously reported. CASE PRESENTATION: We present the case of a young man of consanguineous heritage suffering from cognitive decline and progressive spasticity as well as weakness of the proximal musculature. Utilizing MRI and whole genome sequencing, the patient was diagnosed with a homozygous AARS2 missense variant (NM_020745.3:c.650C > T; p.(Pro217Leu)) and a homozygous CAPN3 variant (NM_000070.2: c.1469G > A; p.(Arg490Gln)), both variants have previously been identified in patients suffering from AARS2 related leukodystrophy and limb-girdle muscular dystrophy, respectively. CONCLUSIONS: This case report presents a case of homozygous AARS2 leukodystrophy and serves to highlight the importance of whole genome sequencing in diagnosing rare neurological diseases as well as to add to the awareness of adult onset leukodystrophies.

12.
JIMD Rep ; 60(1): 96-104, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34258145

ABSTRACT

Two siblings were diagnosed with adult metachromatic leukodystrophy (MLD) and treated with hematopoietic stem cell transplantation (HSCT). While the older sibling was symptomatic at the time of diagnosis, her younger brother was diagnosed and transplanted at the presymptomatic state. We describe patients' clinical, biochemical, and genetic features, as well as neuropsychological and neurophysiological test results, and brain magnetic resonance imaging from pretransplantation and posttransplantation assessments. Both patients converted to complete donor chimerism and arylsulfatase A levels normalized 3 months posttransplantation. Twelve months posttransplantation, neurological and neuropsychological assessment for both patients showed stabilization, and they remained stable for the 38 months long observation period. To assess the effect of HSCT used as treatment for the rare, adult MLD subtype on survival and stabilization, we performed a systematic literature review and included 7 studies with a total of 26 cases. Of these 26 cases, 6 patients died of HSCT-related complications and 2 patients had graft rejection. Of the remaining 18 patients, 2 patients improved after HSCT, 13 patients stabilized, and 3 patients progressed, suggesting that HSCT potentially benefits adult MLD patients. Larger studies focusing on this subtype are needed and recommendations on criteria for HSCT in adult MLD need to be evolved.

14.
Orphanet J Rare Dis ; 15(1): 328, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228797

ABSTRACT

BACKGROUND: Niemann-Pick disease type C (NPC) is a rare, progressive, neurodegenerative disease associated with neurovisceral manifestations resulting from lysosomal dysfunction and aberrant lipid accumulation. A multicentre, prospective observational study (Clinical Trials.gov ID: NCT02435030) of individuals with genetically confirmed NPC1 or NPC2 receiving routine clinical care was conducted, to prospectively characterize and measure NPC disease progression and to investigate potential NPC-related biomarkers versus healthy individuals. Progression was measured using the abbreviated 5-domain NPC Clinical Severity Scale (NPCCSS), 17-domain NPCCSS and NPC clinical database (NPC-cdb) score. Cholesterol esterification and heat shock protein 70 (HSP70) levels were assessed from peripheral blood mononuclear cells (PBMCs), cholestane-3ß,5α-,6ß-triol (cholestane-triol) from serum, and unesterified cholesterol from both PBMCs and skin biopsy samples. The inter- and intra-rater reliability of the 5-domain NPCCSS was assessed by 13 expert clinicians' rating of four participants via video recordings, repeated after ≥ 3 weeks. Intraclass correlation coefficients (ICCs) were calculated. RESULTS: Of the 36 individuals with NPC (2-18 years) enrolled, 31 (86.1%) completed the 6-14-month observation period; 30/36 (83.3%) were receiving miglustat as part of routine clinical care. A mean (± SD) increase in 5-domain NPCCSS scores of 1.4 (± 2.9) was observed, corresponding to an annualized progression rate of 1.5. On the 17-domain NPCCSS, a mean (± SD) progression of 2.7 (± 4.0) was reported. Compared with healthy individuals, the NPC population had significantly lower levels of cholesterol esterification (p < 0.0001), HSP70 (p < 0.0001) and skin unesterified cholesterol (p = 0.0006). Cholestane-triol levels were significantly higher in individuals with NPC versus healthy individuals (p = 0.008) and correlated with the 5-domain NPCCSS (Spearman's correlation coefficient = 0.265, p = 0.0411). The 5-domain NPCCSS showed high ICC agreement in inter-rater reliability (ICC = 0.995) and intra-rater reliability (ICC = 0.937). CONCLUSIONS: Progression rates observed were consistent with other reports on disease progression in NPC. The 5-domain NPCCSS reliability study supports its use as an abbreviated alternative to the 17-domain NPCCSS that focuses on the most relevant domains of the disease. The data support the use of cholestane-triol as a disease monitoring biomarker and the novel methods of measuring unesterified cholesterol could be applicable to support NPC diagnosis. Levels of HSP70 in individuals with NPC were significantly decreased compared with healthy individuals. TRIAL REGISTRATION: CT-ORZY-NPC-001: ClincalTrials.gov NCT02435030, Registered 6 May 2015, https://clinicaltrials.gov/ct2/show/NCT02435030 ; EudraCT 2014-005,194-37, Registered 28 April 2015, https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-005194-37/DE . OR-REL-NPC-01: Unregistered.


Subject(s)
Neurodegenerative Diseases , Niemann-Pick Disease, Type C , Biomarkers , Disease Progression , Humans , Leukocytes, Mononuclear , Prospective Studies , Reproducibility of Results
15.
Mov Disord ; 35(12): 2343-2347, 2020 12.
Article in English | MEDLINE | ID: mdl-32949189

ABSTRACT

BACKGROUND: In a Danish family, multiple individuals in five generations present with early-onset paroxysmal cranial dyskinesia, musculoskeletal abnormalities, and kidney dysfunction. OBJECTIVE: To demonstrate linkage and to identify the underlying genetic cause of disease. METHODS: Genome-wide single-nucleotide polymorphisms analysis, Sequence-Tagged-Site marker analyses, exome sequencing, and Sanger sequencing were performed. RESULTS: Linkage analyses identified a candidate locus on chromosome 9. Exome sequencing revealed a novel variant in LMX1B present in all affected individuals, logarithm of the odds (LOD) score of z = 6.54, predicted to be damaging. Nail-patella syndrome (NPS) is caused by pathogenic variants in LMX1B encoding a transcription factor essential to cytoskeletal and kidney growth and dopaminergic and serotonergic network development. NPS is characterized by abnormal musculoskeletal features and kidney dysfunction. Movement disorders have not previously been associated with NPS. CONCLUSIONS: Paroxysmal dyskinesia is a heretofore unrecognized feature of the NPS spectrum. The pathogenic mechanism might relate to aberrant dopaminergic circuits. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Chorea , Nail-Patella Syndrome , Humans , LIM-Homeodomain Proteins/genetics , Nail-Patella Syndrome/genetics , Skull , Transcription Factors/genetics
16.
J Neurol Sci ; 415: 116897, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32464348

ABSTRACT

Heterozygous variants in smooth muscle alpha-actin gene (ACTA2) are the most frequent cause of autosomal dominant hereditary thoracic aortic disease (HTAD). Several genotype-phenotype associations have been described, including a severe multisystemic smooth muscle disorder associated with de novo ACTA2 p.R179 variants, characterized by highly penetrant and early onset vascular disease, involvement of smooth muscle cell (SMC)-dependent organs and a distinct cerebrovascular phenotype. Missense variants at position 258 (p.R258C and p.R258H) have also been reported to have a more severe presentation including an increased risk for aortic dissection and a high risk of stroke. It has previously been suggested that the cerebrovascular phenotype of patients with p.R258 variants could represent a mild presentation of the cerebrovascular phenotype associated with p.R179 variants. Here we report on a five generation HTAD family with the p.R258H variant and describe the cerebrovascular findings seen in three family members, to expand on the previously reported phenotype associated with variants at this codon.


Subject(s)
Aortic Diseases , Aortic Dissection , Actins/genetics , Aortic Dissection/diagnostic imaging , Aortic Dissection/genetics , Aortic Diseases/diagnostic imaging , Aortic Diseases/genetics , Humans , Mutation , Myocytes, Smooth Muscle , Phenotype
17.
Genet Med ; 22(6): 1102-1107, 2020 06.
Article in English | MEDLINE | ID: mdl-32103184

ABSTRACT

PURPOSE: We studied galactose supplementation in SLC35A2-congenital disorder of glycosylation (SLC35A2-CDG), caused by monoallelic pathogenic variants in SLC35A2 (Xp11.23), encoding the endoplasmic reticulum (ER) and Golgi UDP-galactose transporter. Patients present with epileptic encephalopathy, developmental disability, growth deficiency, and dysmorphism. METHODS: Ten patients with SLC35A2-CDG were supplemented with oral D-galactose for 18 weeks in escalating doses up to 1.5 g/kg/day. Outcome was assessed using the Nijmegen Pediatric CDG Rating Scale (NPCRS, ten patients) and by glycomics (eight patients). RESULTS: SLC35A2-CDG patients demonstrated improvements in overall Nijmegen Pediatric CDG Rating Scale (NPCRS) score (P = 0.008), the current clinical assessment (P = 0.007), and the system specific involvement (P = 0.042) domains. Improvements were primarily in growth and development with five patients resuming developmental progress, which included postural control, response to stimuli, and chewing and swallowing amelioration. Additionally, there were improvements in gastrointestinal symptoms and epilepsy. One patient in our study did not show any clinical improvement. Galactose supplementation improved patients' glycosylation with decreased ratios of incompletely formed to fully formed glycans (M-gal/disialo, P = 0.012 and monosialo/disialo, P = 0.017) and increased levels of a fully galactosylated N-glycan (P = 0.05). CONCLUSIONS: Oral D-galactose supplementation results in clinical and biochemical improvement in SLC35A2-CDG. Galactose supplementation may partially overcome the Golgi UDP-galactose deficiency and improves galactosylation. Oral galactose is well tolerated and shows promise as dietary therapy.


Subject(s)
Congenital Disorders of Glycosylation , Epilepsy , Child , Congenital Disorders of Glycosylation/drug therapy , Congenital Disorders of Glycosylation/genetics , Dietary Supplements , Galactose , Glycosylation , Humans
18.
Biol Psychiatry ; 87(2): 100-112, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31443933

ABSTRACT

BACKGROUND: The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative. METHODS: We used clinically recommended guidelines to collect and interrogate the pathogenicity of 44 USP9X variants associated with neurodevelopmental disorders in males. Functional studies in patient-derived cell lines and mice were used to determine mechanisms of pathology. RESULTS: Twelve missense variants showed strong evidence of pathogenicity. We define a characteristic phenotype of the central nervous system (white matter disturbances, thin corpus callosum, and widened ventricles); global delay with significant alteration of speech, language, and behavior; hypotonia; joint hypermobility; visual system defects; and other common congenital and dysmorphic features. Comparison of in silico and phenotypical features align additional variants of unknown significance with likely pathogenicity. In support of partial loss-of-function mechanisms, using patient-derived cell lines, we show loss of only specific USP9X substrates that regulate neurodevelopmental signaling pathways and a united defect in transforming growth factor ß signaling. In addition, we find correlates of the male phenotype in Usp9x brain-specific knockout mice, and further resolve loss of hippocampal-dependent learning and memory. CONCLUSIONS: Our data demonstrate the involvement of USP9X variants in a distinctive neurodevelopmental and behavioral syndrome in male subjects and identify plausible mechanisms of pathogenesis centered on disrupted transforming growth factor ß signaling and hippocampal function.


Subject(s)
Developmental Disabilities , Intellectual Disability , Transforming Growth Factor beta , Animals , Developmental Disabilities/genetics , Female , Haploinsufficiency , Humans , Intellectual Disability/genetics , Male , Mice , Phenotype , Signal Transduction , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
19.
JIMD Rep ; 50(1): 1-8, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31741821

ABSTRACT

Vitamin B6-responsive epilepsies are a group of genetic disorders including ALDH7A1 deficiency, PNPO deficiency, and others, usually causing neonatal onset seizures resistant to treatment with common antiepileptic drugs. Recently, biallelic mutations in PLPBP were shown to be a novel cause of vitamin B6-dependent epilepsy with a variable phenotype. The different vitamin B6-responsive epilepsies can be detected and distinguished by their respective biomarkers and genetic analysis. Unfortunately, metabolic biomarkers for early detection and prognosis of PLPBP deficiency are currently still lacking. Here, we present data from two further patients with vitamin B6-dependent seizures caused by variants in PLPBP, including a novel missense variant, and compare their genotype and phenotypic presentation to previously described cases. Hyperglycinemia and hyperlactatemia are the most consistently observed biochemical abnormalities in pyridoxal phosphate homeostasis protein (PLPHP) deficient patients and were present in both patients in this report within the first days of life. Lactic acidemia, the neuroradiological, and clinical presentation led to misdiagnosis of a mitochondrial encephalopathy in two previously published cases with an early fatal course. Similarly, on the background of glycine elevation in plasma, glycine encephalopathy was wrongly adopted as diagnosis for a patient in our report. In this regard, lactic acidemia as well as hyperglycinemia appear to be diagnostic pitfalls in patients with vitamin B6-responsive epilepsies, including PLPHP deficiency. SYNOPSIS: In vitamin B6-responsive epilepsies, including PLPHP deficiency, there are several diagnostic pitfalls, including lactic acidemia as well as hyperglycinemia, highlighting the importance of a pyridoxine trial, and genetic testing.

20.
Eur J Hum Genet ; 26(10): 1512-1520, 2018 10.
Article in English | MEDLINE | ID: mdl-29921875

ABSTRACT

An intact and dynamic microtubule cytoskeleton is crucial for the development, differentiation, and maintenance of the mammalian cortex. Variants in a host of structural microtubulin-associated proteins have been identified to cause a wide spectrum of malformations of cortical development and alterations of microtubule dynamics have been recognized to cause or contribute to progressive neurodegenerative disorders. TBCD is one of the five tubulin-specific chaperones and is required for reversible assembly of the α-/ß-tubulin heterodimer. Recently, variants in TBCD, and one other tubulin-specific chaperone, TBCE, have been identified in patients with distinct progressive encephalopathy with a seemingly broad clinical spectrum. Here, we report the clinical, neuroradiological, and neuropathological features in eight patients originating from the Faroe Islands, who presented with an early onset, progressive encephalopathy with features of primary neurodegeneration, and a homogenous clinical course. These patients were homozygous for a TBCD missense variant c.[3099C>G]; p.(Asn1033Lys), which we show has a high carrier frequency in the Faroese population (2.6%). The patients had similar age of onset as the previously reported patients (n = 24), but much shorter survival, which could be caused by either differences in supportive treatment, or alternatively, that shorter survival is intrinsic to the Faroese phenotype. We present a detailed description of the neuropathology and MR imaging characteristics of a subset of these patients, adding insight into the phenotype of TBCD-related encephalopathy. The finding of a Faroese founder variant will allow targeted genetic diagnostics in patients of Faroese descent as well as improved genetic counseling and testing of at-risk couples.


Subject(s)
Brain Diseases/genetics , Microtubule-Associated Proteins/genetics , Neurodegenerative Diseases/genetics , Brain Diseases/physiopathology , Child, Preschool , Denmark , Female , Homozygote , Humans , Infant , Male , Mutation, Missense/genetics , Neurodegenerative Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...