Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Anim Ecol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979934

ABSTRACT

Understanding patterns of species diversity is crucial for ecological research and conservation, and this understanding may be improved by studying patterns in the two components of species diversity, species richness and evenness of abundance of species. Variation in species richness and evenness has previously been linked to variation in total abundance of communities as well as productivity gradients. Exploring both components of species diversity is essential because these components could be unrelated or driven by different mechanisms. The aim of this study was to investigate the relationship between species richness and evenness in European bird communities along an extensive latitudinal gradient. We examined their relationships with latitude and Net Primary Productivity, which determines energy and matter availability for heterotrophs, as well as their responses to territory densities (i.e. the number of territories per area) and community biomass (i.e. the bird biomass per area). We applied a multivariate Poisson log-normal distribution to unique long-term, high-quality time-series data, allowing us to estimate species richness of the community as well as the variance of this distribution, which acts as an inverse measure of evenness. Evenness in the distribution of abundance of species in the community was independent of species richness. Species richness increased with increasing community biomass, as well as with increasing density. Since both measures of abundance were explained by NPP, species richness was partially explained by energy-diversity theory (i.e. the more energy, the more species sustained by the ecosystem). However, species richness did not increase linearly with NPP but rather showed a unimodal relationship. Evenness was not explained either by productivity nor by any of the aspects of community abundance. This study highlights the importance of considering both richness and evenness to gain a better understanding of variation in species diversity. We encourage the study of both components of species diversity in future studies, as well as use of simulation studies to verify observed patterns between richness and evenness.

2.
Sci Rep ; 13(1): 15181, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704641

ABSTRACT

Demographic consequences of rapid environmental change and extreme climatic events (ECEs) can cascade across trophic levels with evolutionary implications that have rarely been explored. Here, we show how an ECE in high Arctic Svalbard triggered a trophic chain reaction, directly or indirectly affecting the demography of both overwintering and migratory vertebrates, ultimately inducing a shift in density-dependent phenotypic selection in migratory geese. A record-breaking rain-on-snow event and ice-locked pastures led to reindeer mass starvation and a population crash, followed by a period of low mortality and population recovery. This caused lagged, long-lasting reductions in reindeer carrion numbers and resultant low abundances of Arctic foxes, a scavenger on reindeer and predator of migratory birds. The associated decrease in Arctic fox predation of goose offspring allowed for a rapid increase in barnacle goose densities. As expected according to r- and K-selection theory, the goose body condition (affecting reproduction and post-fledging survival) maximising Malthusian fitness increased with this shift in population density. Thus, the winter ECE acting on reindeer and their scavenger, the Arctic fox, indirectly selected for higher body condition in migratory geese. This high Arctic study provides rare empirical evidence of links between ECEs, community dynamics and evolution, with implications for our understanding of indirect eco-evolutionary impacts of global change.


Subject(s)
Foxes , Reindeer , Animals , Ducks , Geese , Meat
4.
Ecology ; 104(2): e3908, 2023 02.
Article in English | MEDLINE | ID: mdl-36314902

ABSTRACT

Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.


Subject(s)
Passeriformes , Songbirds , Animals , Temperature , Seasons , Reproduction
5.
Ecology ; 103(8): e3731, 2022 08.
Article in English | MEDLINE | ID: mdl-35416286

ABSTRACT

Our knowledge of the factors affecting species abundances is mainly based on time-series analyses of a few well-studied species at single or few localities, but we know little about whether results from such analyses can be extrapolated to the community level. We apply a joint species distribution model to long-term time-series data on British bird communities to examine the relative contribution of intra- and interspecific density dependence at different spatial scales, as well as the influence of environmental stochasticity, to spatiotemporal interspecific variation in abundance. Intraspecific density dependence has the major structuring effect on these bird communities. In addition, environmental fluctuations affect spatiotemporal differences in abundance. In contrast, species interactions had a minor impact on variation in abundance. Thus, important drivers of single-species dynamics are also strongly affecting dynamics of communities in time and space.


Subject(s)
Birds , Ecosystem , Animals , Population Dynamics
6.
Ecol Lett ; 25(4): 863-875, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35103374

ABSTRACT

Harvesting can magnify the destabilising effects of environmental perturbations on population dynamics and, thereby, increase extinction risk. However, population-dynamic theory predicts that impacts of harvesting depend on the type and strength of density-dependent regulation. Here, we used logistic population growth models and an empirical reindeer case study to show that low to moderate harvesting can actually buffer populations against environmental perturbations. This occurs because of density-dependent environmental stochasticity, where negative environmental impacts on vital rates are amplified at high population density due to intra-specific resource competition. Simulations from our population models show that even low levels of harvesting may prevent overabundance, thereby dampening population fluctuations and reducing the risk of population collapse and quasi-extinction following environmental perturbations. Thus, depending on the species' life history and the strength of density-dependent environmental drivers, low to moderate harvesting can improve population resistance to increased climate variability and extreme weather expected under global warming.


Subject(s)
Population Dynamics , Logistic Models , Population Density
7.
Am Nat ; 198(1): 13-32, 2021 07.
Article in English | MEDLINE | ID: mdl-34143723

ABSTRACT

AbstractHere, we propose a theory for the structure of communities of competing species. We include ecologically realistic assumptions, such as density dependence and stochastic fluctuations in the environment, and analyze how evolution caused by r- and K-selection will affect the packing of species in the phenotypic space as well as the species abundance distribution. Species-specific traits have the same matrix G of additive genetic variances and covariances, and evolution of mean traits is affected by fluctuations in population size of all species. In general, the model produces a shape of the distributions of log abundances that is skewed to the left, which is typical of most natural communities. Mean phenotypes of the species in the community are distributed approximately uniformly on the surface of a multidimensional sphere. However, environmental stochasticity generates selection that deviates species slightly from this surface; nonetheless, phenotypic distribution will be different from a random packing of species. This model of community evolution provides a theoretical framework that predicts a relationship between the structure of the phenotypic space and the form of species abundance distributions that can be compared against time series of variation in community structure.


Subject(s)
Biota , Phenotype , Population Density , Species Specificity
8.
Am Nat ; 197(1): 93-110, 2021 01.
Article in English | MEDLINE | ID: mdl-33417521

ABSTRACT

AbstractAdaptive topography is a central concept in evolutionary biology, describing how the mean fitness of a population changes with gene frequencies or mean phenotypes. We use expected population size as a quantity to be maximized by natural selection to show that selection on pairwise combinations of reproductive traits of collared flycatchers caused by fluctuations in population size generated an adaptive topography with distinct peaks often located at intermediate phenotypes. This occurred because r- and K-selection made phenotypes favored at small densities different from those with higher fitness at population sizes close to the carrying capacity K. Fitness decreased rapidly with a delay in the timing of egg laying, with a density-dependent effect especially occurring among early-laying females. The number of fledglings maximizing fitness was larger at small population sizes than when close to K. Finally, there was directional selection for large fledglings independent of population size. We suggest that these patterns can be explained by increased competition for some limiting resources or access to favorable nest sites at high population densities. Thus, r- and K-selection based on expected population size as an evolutionary maximization criterion may influence life-history evolution and constrain the selective responses to changes in the environment.


Subject(s)
Population Density , Songbirds/genetics , Songbirds/physiology , Animals , Biological Evolution , Female , Genetic Fitness , Male , Oviposition/physiology , Selection, Genetic , Sweden
9.
Ecol Lett ; 24(2): 227-238, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33184991

ABSTRACT

Environmental change influences fitness-related traits and demographic rates, which in herbivores are often linked to resource-driven variation in body condition. Coupled body condition-demographic responses may therefore be important for herbivore population dynamics in fluctuating environments, such as the Arctic. We applied a transient Life-Table Response Experiment ('transient-LTRE') to demographic data from Svalbard barnacle geese (Branta leucopsis), to quantify their population-dynamic responses to changes in body mass. We partitioned contributions from direct and delayed demographic and body condition-mediated processes to variation in population growth. Declines in body condition (1980-2017), which positively affected reproduction and fledgling survival, had negligible consequences for population growth. Instead, population growth rates were largely reproduction-driven, in part through positive responses to rapidly advancing spring phenology. The virtual lack of body condition-mediated effects indicates that herbivore population dynamics may be more resilient to changing body condition than previously expected, with implications for their persistence under environmental change.


Subject(s)
Herbivory , Population Growth , Animal Migration , Animals , Arctic Regions , Geese , Population Dynamics , Seasons , Svalbard
10.
Sci Rep ; 10(1): 8513, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444662

ABSTRACT

Urbanisation has strong effects on biodiversity patterns, but impacts vary among species groups and across spatial scales. From a local biodiversity management perspective, a more general understanding of species richness across taxonomic groups is required. This study aims to investigate how fine-scale land-cover variables influence species richness patterns of locally threatened and alien species. The study was performed in Trondheim, Norway, covering a steep urbanisation gradient. Spatially correlated Generalised Linear Mixed Effects Models predicting the number of all-, threatened-and alien species by taxon, habitat, habitat heterogeneity and mean aspect within 500 m×500 m grid cells were constructed. The habitat categories were based on detailed land-cover maps. The highest number of threatened species was found in habitats relatively less affected by humans, whereas the number of alien species were only dependent on taxonomic group and spatial correlation. It is shown that land-cover variables within an administrative border can be used to make predictions on species richness within overarching species groups. Recommendations to biodiversity management agencies are to ensure protection of natural habitats to favour locally threatened species, and closely monitor urban areas to mitigate the introduction and spread of alien species.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Endangered Species , Urbanization/trends , Agriculture , Animals , Human Activities , Humans , Norway , Rural Population , Species Specificity
11.
Biol Lett ; 16(4): 20200075, 2020 04.
Article in English | MEDLINE | ID: mdl-32264780

ABSTRACT

Quantifying how key life-history traits respond to climatic change is fundamental in understanding and predicting long-term population prospects. Age at first reproduction (AFR), which affects fitness and population dynamics, may be influenced by environmental stochasticity but has rarely been directly linked to climate change. Here, we use a case study from the highly seasonal and stochastic environment in High-Arctic Svalbard, with strong temporal trends in breeding conditions, to test whether rapid climate warming may induce changes in AFR in barnacle geese, Branta leucopsis. Using long-term mark-recapture and reproductive data (1991-2017), we developed a multi-event model to estimate individual AFR (i.e. when goslings are produced). The annual probability of reproducing for the first time was negatively affected by population density but only for 2 year olds, the earliest age of maturity. Furthermore, advanced spring onset (SO) positively influenced the probability of reproducing and even more strongly the probability of reproducing for the first time. Thus, because climate warming has advanced SO by two weeks, this likely led to an earlier AFR by more than doubling the probability of reproducing at 2 years of age. This may, in turn, impact important life-history trade-offs and long-term population trajectories.


Subject(s)
Geese , Thoracica , Animal Migration , Animals , Arctic Regions , Child, Preschool , Family Planning Services , Humans , Reproduction , Seasons , Svalbard
12.
J Anim Ecol ; 89(6): 1419-1432, 2020 06.
Article in English | MEDLINE | ID: mdl-32108334

ABSTRACT

Theory predicts that animal populations will be synchronized over large distances by weather and climatic conditions with high spatial synchrony. However, local variation in population responses to weather, and low synchrony in key weather variables or in other ecological processes may reduce the population synchrony. We investigated to what extent temperature and precipitation during different periods of the year synchronized juvenile body mass of moose and reindeer in Norway. We expected high synchronizing effect of weather variables with a high and consistent explanatory power on body mass dynamics across populations, and a weaker synchronizing effect of weather variables whose effect on body mass varied among populations. Juvenile body mass in both species was related to temperature and precipitation during several periods of the year. Temperature had the strongest explanatory power in both species, with a similar effect across all populations. There was higher spatial synchrony in temperature compared to precipitation, and accordingly temperature had the strongest synchronizing effect on juvenile body mass. Moreover, periods with strong explanatory power had stronger synchronizing effect on juvenile body mass in both species. However, weather variables with large variation in the effects on body mass among populations had weak synchronizing effect. The results confirm that weather has a large impact on the spatial structure of population properties but also that spatial heterogeneity, for instance, in environmental change or population density may affect how and to what extent populations are synchronized.


Subject(s)
Reindeer , Weather , Animals , Norway , Population Dynamics , Seasons , Temperature
13.
Glob Chang Biol ; 26(2): 642-657, 2020 02.
Article in English | MEDLINE | ID: mdl-31436007

ABSTRACT

Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population-dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non-hunted population of high-arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual-based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age-specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green-up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non-breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density-dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density-dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population-dynamic responses to global change in migratory species.


Subject(s)
Climate Change , Geese , Animal Migration , Animals , Arctic Regions , Norway , Seasons , Svalbard
14.
Glob Chang Biol ; 25(11): 3656-3668, 2019 11.
Article in English | MEDLINE | ID: mdl-31435996

ABSTRACT

The 'Moran effect' predicts that dynamics of populations of a species are synchronized over similar distances as their environmental drivers. Strong population synchrony reduces species viability, but spatial heterogeneity in density dependence, the environment, or its ecological responses may decouple dynamics in space, preventing extinctions. How such heterogeneity buffers impacts of global change on large-scale population dynamics is not well studied. Here, we show that spatially autocorrelated fluctuations in annual winter weather synchronize wild reindeer dynamics across high-Arctic Svalbard, while, paradoxically, spatial variation in winter climate trends contribute to diverging local population trajectories. Warmer summers have improved the carrying capacity and apparently led to increased total reindeer abundance. However, fluctuations in population size seem mainly driven by negative effects of stochastic winter rain-on-snow (ROS) events causing icing, with strongest effects at high densities. Count data for 10 reindeer populations 8-324 km apart suggested that density-dependent ROS effects contributed to synchrony in population dynamics, mainly through spatially autocorrelated mortality. By comparing one coastal and one 'continental' reindeer population over four decades, we show that locally contrasting abundance trends can arise from spatial differences in climate change and responses to weather. The coastal population experienced a larger increase in ROS, and a stronger density-dependent ROS effect on population growth rates, than the continental population. In contrast, the latter experienced stronger summer warming and showed the strongest positive response to summer temperatures. Accordingly, contrasting net effects of a recent climate regime shift-with increased ROS and harsher winters, yet higher summer temperatures and improved carrying capacity-led to negative and positive abundance trends in the coastal and continental population respectively. Thus, synchronized population fluctuations by climatic drivers can be buffered by spatial heterogeneity in the same drivers, as well as in the ecological responses, averaging out climate change effects at larger spatial scales.


Subject(s)
Reindeer , Animals , Arctic Regions , Climate Change , Population Dynamics , Seasons , Snow , Svalbard
15.
Nat Commun ; 10(1): 1616, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962419

ABSTRACT

Extreme climate events often cause population crashes but are difficult to account for in population-dynamic studies. Especially in long-lived animals, density dependence and demography may induce lagged impacts of perturbations on population growth. In Arctic ungulates, extreme rain-on-snow and ice-locked pastures have led to severe population crashes, indicating that increasingly frequent rain-on-snow events could destabilize populations. Here, using empirically parameterized, stochastic population models for High-Arctic wild reindeer, we show that more frequent rain-on-snow events actually reduce extinction risk and stabilize population dynamics due to interactions with age structure and density dependence. Extreme rain-on-snow events mainly suppress vital rates of vulnerable ages at high population densities, resulting in a crash and a new population state with resilient ages and reduced population sensitivity to subsequent icy winters. Thus, observed responses to single extreme events are poor predictors of population dynamics and persistence because internal density-dependent feedbacks act as a buffer against more frequent events.


Subject(s)
Cold Climate/adverse effects , Models, Statistical , Reindeer , Animals , Arctic Regions , Female , Population Dynamics/statistics & numerical data , Rain , Seasons , Snow , Stochastic Processes , Svalbard
16.
J Anim Ecol ; 88(8): 1191-1201, 2019 08.
Article in English | MEDLINE | ID: mdl-31032900

ABSTRACT

Density regulation of the population growth rate occurs through negative feedbacks on underlying vital rates, in response to increasing population size. Here, we examine in a capital breeder how vital rates of different life-history stages, their elasticities and population growth rates are affected by changes in population size. We developed an integrated population model for a local population of Svalbard barnacle geese, Branta leucopsis, using counts, reproductive data and individual-based mark-recapture data (1990-2017) to model age class-specific survival, reproduction and number of individuals. Based on these estimates, we quantified the changes in demographic structure and the effect of population size on age class-specific vital rates and elasticities, as well as the population growth rate. Local density regulation at the breeding grounds acted to reduce population growth through negative effects on reproduction; however, population size could not explain substantial variation in survival rates, although there was some support for density-dependent first-year survival. With the use of prospective perturbation analysis of the density-dependent projection matrix, we show that the elasticities to different vital rates changed as population size increased. As population size approached carrying capacity, the influence of reproductive rates and early-life survival on the population growth rate was reduced, whereas the influence of adult survival increased. A retrospective perturbation analysis revealed that density dependence resulted in a positive contribution of reproductive rates, and a negative contribution of the numbers of individuals in the adult age class, to the realised population growth rate. The patterns of density dependence in this population of barnacle geese were different from those recorded in income breeding birds, where density regulation mainly occurs through an effect on early-life survival. This indicates that the population dynamics of capital breeders, such as the barnacle goose, are likely to be more reproduction-driven than is the case for income breeders.


Subject(s)
Geese , Thoracica , Animal Migration , Animals , Arctic Regions , Population Dynamics , Prospective Studies , Retrospective Studies , Seasons , Svalbard
17.
Proc Biol Sci ; 284(1855)2017 May 31.
Article in English | MEDLINE | ID: mdl-28539525

ABSTRACT

Estimation of intra- and interspecific interactions from time-series on species-rich communities is challenging due to the high number of potentially interacting species pairs. The previously proposed sparse interactions model overcomes this challenge by assuming that most species pairs do not interact. We propose an alternative model that does not assume that any of the interactions are necessarily zero, but summarizes the influences of individual species by a small number of community-level drivers. The community-level drivers are defined as linear combinations of species abundances, and they may thus represent e.g. the total abundance of all species or the relative proportions of different functional groups. We show with simulated and real data how our approach can be used to compare different hypotheses on community structure. In an empirical example using aquatic microorganisms, the community-level drivers model clearly outperformed the sparse interactions model in predicting independent validation data.


Subject(s)
Biota , Ecology/methods , Models, Biological , Computer Simulation , Water Microbiology
18.
Sci Adv ; 3(2): e1602298, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28164157

ABSTRACT

Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions.


Subject(s)
Global Warming , Models, Biological , Population Dynamics , Seasons , Humans
19.
Ecology ; 97(9): 2479-2490, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27859080

ABSTRACT

Classical approaches for the analyses of density dependence assume that all the individuals in a population equally respond and equally contribute to density dependence. However, in age-structured populations, individuals of different ages may differ in their responses to changes in population size and how they contribute to density dependence affecting the growth rate of the whole population. Here we apply the concept of critical age classes, i.e., a specific scalar function that describes how one or a combination of several age classes affect the demographic rates negatively, in order to examine how total density dependence acting on the population growth rate depends on the age-specific population sizes. In a 38-yr dataset of an age-structured great tit (Parus major) population, we find that the age classes, including the youngest breeding females, were the critical age classes for density regulation. These age classes correspond to new breeders that attempt to take a territory and that have the strongest competitive effect on other breeding females. They strongly affected population growth rate and reduced recruitment and survival rates of all breeding females. We also show that depending on their age class, females may differently respond to varying density. In particular, the negative effect of the number of breeding females was stronger on recruitment rate of the youngest breeding females. These findings question the classical assumptions that all the individuals of a population can be treated as having an equal contribution to density regulation and that the effect of the number of individuals is age independent. Our results improve our understanding of density regulation in natural populations.


Subject(s)
Passeriformes/physiology , Animals , Ecology , Female , Male , Population Density , Population Dynamics , Population Growth
20.
Nat Commun ; 7: 12001, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27328710

ABSTRACT

There is large interspecific variation in the magnitude of population fluctuations, even among closely related species. The factors generating this variation are not well understood, primarily because of the challenges of separating the relative impact of variation in population size from fluctuations in the environment. Here, we show using demographic data from 13 bird populations that magnitudes of fluctuations in population size are mainly driven by stochastic fluctuations in the environment. Regulation towards an equilibrium population size occurs through density-dependent mortality. At small population sizes, population dynamics are primarily driven by environment-driven variation in recruitment, whereas close to the carrying capacity K, variation in population growth is more strongly influenced by density-dependent mortality of both juveniles and adults. Our results provide evidence for the hypothesis proposed by Lack that population fluctuations in birds arise from temporal variation in the difference between density-independent recruitment and density-dependent mortality during the non-breeding season.


Subject(s)
Biodiversity , Birds/physiology , Genetics, Population , Animals , Antarctic Regions , Ecosystem , Female , Male , Models, Statistical , Population Density , Population Dynamics , Population Growth , Species Specificity , Stochastic Processes , Strigiformes , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...