Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Cancers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672617

ABSTRACT

The DSL-6A/C1 murine pancreatic ductal adenocarcinoma (PDAC) tumor model was established in Lewis rats and characterized through a comprehensive multiparametric analysis to compare it to other preclinical tumor models and explore potential diagnostic and therapeutical targets. DSL-6A/C1 tumors were histologically analyzed to elucidate PDAC features. The tumor microenvironment was studied for immune cell prevalence. Multiparametric MRI and PET imaging were utilized to characterize tumors, and 68Ga-FAPI-46-targeting cancer-associated fibroblasts (CAFs), were used to validate the histological findings. The histology confirmed typical PDAC characteristics, such as malformed pancreatic ductal malignant cells and CAFs. Distinct immune landscapes were identified, revealing an increased presence of CD8+ T cells and a decreased CD4+ T cell fraction within the tumor microenvironment. PET imaging with 68Ga-FAPI tracers exhibited strong tracer uptake in tumor tissues. The MRI parameters indicated increasing intralesional necrosis over time and elevated contrast media uptake in vital tumor areas. We have demonstrated that the DSL-6A/C1 tumor model, particularly due to its high tumorigenicity, tumor size, and 68Ga-FAPI-46 sensitivity, is a suitable alternative to established small animal models for many forms of preclinical analyses and therapeutic studies of PDAC.

2.
NMR Biomed ; 37(4): e5086, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110293

ABSTRACT

Fluorine MRI is finding wider acceptance in theranostics applications where imaging of 19 F hotspots of fluorinated contrast material is central. The essence of such applications is to capture ghosting-artifact-free images of the inherently low MR response under clinically viable conditions. To serve this purpose, this work introduces the balanced spiral spectroscopic imaging (BaSSI) sequence, which is implemented on a 3.0 T clinical scanner and is capable of generating 19 F hotspot images in an efficient manner. The sequence utilizes an all-phase-encoded pseudo-spiral k-space trajectory, enabling the acquisition of broadband (80 ppm) fluorine spectra free from chemical shift ghosting. BaSSI can acquire a 64 × 64 image with 1 mm × 1 mm voxels in just 14 s, significantly outperforming typical MRSI sequences used in 1 H or 31 P imaging. The study employed in silico characterization to verify essential design choices such as the excitation pulse, as well as to identify the boundaries of the parameter space explored for optimization. BaSSI's performance was further benchmarked against the 3D ultrashort-echo-time balanced steady-state free precession (3D UTE BSSFP) sequence, a well established method used in 19 F MRI, in vitro. Both sequences underwent extensive optimization through exploration of a wide parameter space on a small phantom containing 10 µL of non-diluted bulk perfluorooctylbromide (PFOB) prior to comparative experiments. Subsequent to optimization, BaSSI and 3D UTE BSSFP were employed to capture images of small non-diluted bulk PFOB samples (0.10 and 0.05 µL), with variations in the number of signal averages, and thus the total scan time, in order to assess the detection sensitivities of the sequences. In these experiments, the detection sensitivity was evaluated using the Rose criterion (Rc ), which provides a quantitative metric for assessing object visibility. The study further demonstrated BaSSI's utility as a (pre)clinical tool through postmortem imaging of polymer microspheres filled with PFOB in a BALB/c mouse. Anatomic localization of 19 F hotspots was achieved by denoising raw data obtained with BaSSI using a filter based on the Rose criterion. These data were then successfully registered to 1 H anatomical images. BaSSI demonstrated superior detection sensitivity in the benchmarking analysis, achieving Rc values approximately twice as high as those obtained with the 3D UTE BSSFP method. The technique successfully facilitated imaging and precise localization of 19 F hotspots in postmortem experiments. However, it is important to highlight that imaging 10 mM PFOB in small mice postmortem, utilizing a 48 × 48 × 48 3D scan, demanded a substantial scan time of 1 h and 45 min. Further studies will explore accelerated imaging techniques, such as compressed sensing, to enhance BaSSI's clinical utility.


Subject(s)
Fluorocarbons , Hydrocarbons, Brominated , Mice , Animals , Fluorine , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods
3.
Sci Rep ; 13(1): 22178, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092810

ABSTRACT

Percutaneous drainage is a first-line therapy for abscesses and other fluid collections. However, experimental data on the viscosity of body fluids are scarce. This study analyses the apparent viscosity of serous, purulent and biliary fluids to provide reference data for the evaluation of drainage catheters. Serous, purulent and biliary fluid samples were collected during routine drainage procedures. In a first setup, the apparent kinematic viscosity of 50 fluid samples was measured using an Ubbelohde viscometer. In a second setup, the apparent dynamic viscosity of 20 fluid samples obtained during CT-guided percutaneous drainage was measured using an in-house designed capillary extrusion experiment. The median apparent kinematic viscosity was 0.96 mm2/s (IQR 0.90-1.15 mm2/s) for serous samples, 0.98 mm2/s (IQR 0.97-0.99 mm2/s) for purulent samples and 2.77 mm2/s (IQR 1.75-3.70 mm2/s) for biliary samples. The median apparent dynamic viscosity was 1.63 mPa*s (IQR 1.27-2.09 mPa*s) for serous samples, 2.45 mPa*s (IQR 1.69-3.22 mPa*s) for purulent samples and 3.50 mPa*s (IQR 2.81-3.90 mPa*s) for biliary samples (all differences p < 0.01). Relative to water, dynamic viscosities were increased by a factor of 1.36 for serous fluids, 2.26 for purulent fluids, and 4.03 for biliary fluids. Serous fluids have apparent viscosities similar to water, but biliary and purulent fluids are more viscous. These data can be used as a reference when selecting the drainage catheter size, with 8F catheters being appropriate for most percutaneous drainage cases.


Subject(s)
Abscess , Drainage , Humans , Viscosity , Drainage/methods , Abscess/therapy , Catheters , Water
4.
Int J Hyperthermia ; 40(1): 2283388, 2023.
Article in English | MEDLINE | ID: mdl-37994800

ABSTRACT

Purpose: A crucial aspect of quality assurance in thermal therapy is periodic demonstration of the heating performance of the device. Existing methods estimate the specific absorption rate (SAR) from the temperature rise after a short power pulse, which yields a biased estimate as thermal diffusion broadens the apparent SAR pattern. To obtain an unbiased estimate, we propose a robust frequency-domain method that simultaneously identifies the SAR as well as the thermal dynamics.Methods: We propose a method consisting of periodic modulation of the FUS power while recording the response with MR thermometry (MRT). This approach enables unbiased measurements of spatial Fourier coefficients that encode the thermal response. These coefficients are substituted in a generic thermal model to simultaneously estimate the SAR, diffusivity, and damping. The method was tested using a cylindrical phantom and a 3 T clinical MR-HIFU system. Three scenarios with varying modulation strategies are chosen to challenge the method. The results are compared to the well-known power pulse technique.Results: The thermal diffusivity is estimated at 0.151 mm2s-1 with a standard deviation of 0.01 mm2s-1 between six experiments. The SAR estimates are consistent between all experiments and show an excellent signal-to-noise ratio (SNR) compared to the well established power pulse method. The frequency-domain method proved to be insensitive to B0-drift and non steady-state initial temperature distributions.Conclusion: The proposed frequency-domain estimation method shows a high SNR and provided reproducible estimates of the SAR and the corresponding thermal diffusivity. The findings suggest that frequency-domain tools can be highly effective at estimating the SAR from (biased) MRT data acquired during periodic power modulation.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Thermometry , Thermal Diffusion , Temperature , Magnetic Resonance Imaging/methods , Phantoms, Imaging
5.
Front Oncol ; 13: 1124244, 2023.
Article in English | MEDLINE | ID: mdl-37361566

ABSTRACT

Desmoid tumors are a rare form of cancer, which show locally aggressive invasion of surrounding tissues and may occur anywhere in the body. Treatment options comprise conservative watch and wait strategies as tumors may show spontaneous regression as well as surgical resection, radiation therapy, nonsteroidal anti-inflammatory drugs (NSAID), chemotherapy, or local thermoablative approaches for progressive disease. The latter comprises cryotherapy, radiofrequency, microwave ablation, or thermal ablation with high intensity focused ultrasound (HIFU) as the only entirely non-invasive option. This report presents a case where a desmoid tumor at the left dorsal humerus was 2 times surgically resected and, after recurrence, thermally ablated with HIFU under magnetic resonance image-guidance (MR-HIFU). In our report, we analyze tumor volume and/or pain score during standard of care (2 years) and after HIFU treatment over a 4-year follow-up period. Results showed MR-HIFU treatment led to complete tumor remission and pain response.

6.
Article in English | MEDLINE | ID: mdl-36673840

ABSTRACT

Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) is an innovative treatment for patients with painful bone metastases. The adoption of MR-HIFU will be influenced by several factors beyond its effectiveness. To identify contextual factors affecting the adoption of MR-HIFU, we conducted a group concept mapping (GCM) study in four European countries. The GCM was conducted in two phases. First, the participants brainstormed statements guided by the focus prompt "One factor that may influence the uptake of MR-HIFU in clinical practice is...". Second, the participants sorted statements into categories and rated the statements according to their importance and changeability. To generate a concept map, multidimensional scaling and cluster analysis were conducted, and average ratings for each (cluster of) factors were calculated. Forty-five participants contributed to phase I and/or II (56% overall participation rate). The resulting concept map comprises 49 factors, organized in 12 clusters: "competitive treatments", "physicians' attitudes", "alignment of resources", "logistics and workflow", "technical disadvantages", "radiotherapy as first-line therapy", "aggregating knowledge and improving awareness", "clinical effectiveness", "patients' preferences", "reimbursement", "cost-effectiveness" and "hospital costs". The factors identified echo those from the literature, but their relevance and interrelationship are case-specific. Besides evidence on clinical effectiveness, contextual factors from 10 other clusters should be addressed to support adoption of MR-HIFU.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Humans , High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Pain , Treatment Outcome , Magnetic Resonance Spectroscopy
7.
Trials ; 23(1): 1061, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36582001

ABSTRACT

BACKGROUND: Cancer-induced bone pain (CIBP), caused by bone metastases, is a common complication of cancer and strongly impairs quality of life (QoL). External beam radiotherapy (EBRT) is the current standard of care for treatment of CIBP. However, approximately 45% of patients have no adequate pain response after EBRT. Magnetic resonance image-guided high-intensity focused ultrasound (MR-HIFU) may improve pain palliation in this patient population. The main objective of this trial was to compare MR-HIFU, EBRT, and MR-HIFU + EBRT for the palliative treatment of bone metastases. METHODS/DESIGN: The FURTHER trial is an international multicenter, three-armed randomized controlled trial. A total of 216 patients with painful bone metastases will be randomized in a 1:1:1 ratio to receive EBRT only, MR-HIFU only, or combined treatment with EBRT followed by MR-HIFU. During a follow-up period of 6 months, patients will be contacted at eight time points to retrieve information about their level of pain, QoL, and the occurrence of (serious) adverse events. The primary outcome of the trial is pain response at 14 days after start of treatment. Secondary outcomes include pain response at 14 days after trial enrolment, pain scores (daily until the 21st day and at 4, 6, 12 and 24 weeks), toxicity, adverse events, QoL, and survival. Cost-effectiveness and cost-utility analysis will be conducted. DISCUSSION: The FURTHER trial aims to evaluate the effectiveness and cost-effectiveness of MR-HIFU-alone or in combination with EBRT-compared to EBRT to relieve CIBP. The trial will be performed in six hospitals in four European countries, all of which are partners in the FURTHER consortium. TRIAL REGISTRATION: The FURTHER trial is registered under the Netherlands Trials Register number NL71303.041.19 and ClinicalTrials.gov registration number NCT04307914. Date of trial registration is 13-01-2020.


Subject(s)
Bone Neoplasms , Cancer Pain , Humans , Palliative Care/methods , Quality of Life , Pain Management/methods , Pain , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/radiotherapy , Cancer Pain/radiotherapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
8.
Front Oncol ; 12: 987546, 2022.
Article in English | MEDLINE | ID: mdl-36212449

ABSTRACT

Introduction: Magnetic Resonance Image-guided High Intensity Focused Ultrasound (MR-HIFU) is a non-invasive treatment option for palliative patients with painful bone metastases. Early evidence suggests that MR-HIFU is associated with similar overall treatment response, but more rapid pain palliation compared to external beam radiotherapy (EBRT). This modelling study aimed to assess the cost-effectiveness of MR-HIFU as an alternative treatment option for painful bone metastases from the perspective of the German Statutory Health Insurance (SHI). Materials and methods: A microsimulation model with lifelong time horizon and one-month cycle length was developed. To calculate the incremental cost-effectiveness ratio (ICER), strategy A (MR-HIFU as first-line treatment or as retreatment option in case of persistent pain or only partial pain relief after EBRT) was compared to strategy B (EBRT alone) for patients with bone metastases due to breast, prostate, or lung cancer. Input parameters used for the model were extracted from the literature. Results were expressed as EUR per quality-adjusted life years (QALYs) and EUR per pain response (i.e., months spent with complete or partial pain response). Deterministic and probabilistic sensitivity analyses (PSA) were performed to test the robustness of results, and a value of information analysis was conducted. Results: Compared to strategy B, strategy A resulted in additional costs (EUR 399) and benefits (0.02 QALYs and 0.95 months with pain response). In the base case, the resulting ICERs (strategy A vs. strategy B) are EUR 19,845/QALY and EUR 421 per pain response. Offering all patients MR-HIFU as first-line treatment would increase the ICER by 50% (31,048 EUR/QALY). PSA showed that at a (hypothetical) willingness to pay of EUR 20,000/QALY, the probability of MR-HIFU being cost-effective was 52%. The expected value of perfect information (EVPI) for the benefit population in Germany is approximately EUR 190 Mio. Conclusion: Although there is considerable uncertainty, the results demonstrate that introducing MR-HIFU as a treatment alternative for painful bone metastases might be cost-effective for the German SHI. The high EVPI indicate that further studies to reduce uncertainty would be worthwhile.

9.
J Control Release ; 343: 798-812, 2022 03.
Article in English | MEDLINE | ID: mdl-35134460

ABSTRACT

PURPOSE: Encapsulation of cytotoxic drugs for a localized release is an effective way to increase the therapeutic window of such agents. In this article we present the localized release of doxorubicin (DOX) from phosphatidyldiglycerol (DPPG2) based thermosensitive liposomes using MR-HIFU mediated hyperthermia in a swine model. MATERIALS AND METHODS: German landrace pigs of weights between 37.5 and 53.5 kg received a 30-min infusion of DOX containing thermosensitive liposomes (50 mg DOX/m2). The pigs' biceps femoris was treated locally in two separate target areas with mild hyperthermia using magnetic resonance guided high intensity focused ultrasound, starting 10 min and 60 min after initiation of the infusion, respectively. The pharmacokinetics and biodistribution of DOX were determined and an analysis of the treatment parameters' influence was performed. RESULTS: Compared to untreated tissue, we found a 15-fold and a 7-fold increase in DOX concentration in the muscle volumes that had undergone hyperthermia starting 10 min and 60 min after the beginning of the infusion, respectively. The pharmacokinetic analysis showed a prolonged circulation time of DOX and a correlation between the AUC of extra-liposomal DOX in the bloodstream and the amount of DOX accumulated in the target tissue. CONCLUSIONS: We have demonstrated a workflow for MR-HIFU hyperthermia drug delivery that can be adapted to a clinical setting, showing that HIFU-hyperthermia is a suitable method for local drug release of DOX using DPPG2 based thermosensitive liposomes in stationary targets. Using the developed pharmacokinetic model, an optimization of the drug quantity deposited in the target via the timing of infusion and hyperthermia should be possible.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Hyperthermia, Induced , Animals , Antibiotics, Antineoplastic , Doxorubicin , Drug Delivery Systems/methods , High-Intensity Focused Ultrasound Ablation/methods , Hyperthermia, Induced/methods , Liposomes , Swine , Tissue Distribution
10.
Int J Hyperthermia ; 39(1): 173-180, 2022.
Article in English | MEDLINE | ID: mdl-35021942

ABSTRACT

OBJECTIVE: To determine resource consumption and total costs for providing magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment to a patient with cancer-induced bone pain (CIBP). METHODS: We conducted a time-driven activity-based costing (TD-ABC) of MR-HIFU treatments for CIBP from a hospital perspective. A European care-pathway (including a macro-, meso-, and micro-level) was designed to incorporate the care-delivery value chain. Time estimates were obtained from medical records and from prospective direct observations. To calculate the capacity cost rate, data from the controlling department of a German university hospital were allocated to the modules of the care pathway. Best- and worst-case scenarios were calculated by applying lower and upper bounds of time measurements. RESULTS: The macro-level care pathway consisted of eight modules (i.e., outpatient consultations, pretreatment imaging, preparation, optimization, sonication, post-treatment, recovery, and anesthesia). The total cost of an MR-HIFU treatment amounted to €5147 per patient. Best- and worst-case scenarios yielded a total cost of €4092 and to €5876. According to cost categories, costs due to equipment accounted for 41% of total costs, followed by costs with personnel (32%), overhead (16%) and materials (11%). CONCLUSION: MR-HIFU is an emerging noninvasive treatment for alleviating CIBP, with increasing evidence on treatment efficacy. This costing study can support MR-HIFU reimbursement negotiations and facilitate the adoption of MR-HIFU as first-line treatment for CIBP. The present TD-ABC model creates the opportunity of benchmarking the provision of MR-HIFU to bone tumor.Key pointsMagnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is an emerging noninvasive treatment modality for alleviating cancer-induced bone pain (CIBP).From a hospital perspective, the total cost of MR-HIFU amounted to €5147 per treatment.This time-driven activity-based costing model creates the opportunity of benchmarking the provision of MR-HIFU to bone tumor.


Subject(s)
Bone Neoplasms , Cancer Pain , High-Intensity Focused Ultrasound Ablation , Bone Neoplasms/complications , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/therapy , High-Intensity Focused Ultrasound Ablation/methods , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Prospective Studies
11.
Cancers (Basel) ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36612105

ABSTRACT

High Intensity Focused Ultrasound (HIFU) is the only non-invasive method for percutaneous thermal ablation of tissue, with treatments typically performed either under magnetic resonance imaging or ultrasound guidance. Since this method allows efficient heating of bony structures, it has found not only early use in treatment of bone pain, but also in local treatment of malignant bone tumors. This review of 20 years of published studies shows that HIFU is a very efficient method for rapid pain relief, can provide local tumor control and has a very patient-friendly safety profile.

12.
J Autoimmun ; 124: 102726, 2021 11.
Article in English | MEDLINE | ID: mdl-34555678

ABSTRACT

The ability of regulatory T (Treg) cells to migrate into inflammatory sites is reduced in autoimmune diseases, including rheumatoid arthritis (RA). The reasons for impaired Treg cell migration remain largely unknown. We performed multiplex human kinase activity arrays to explore possible differences in the post-translational phosphorylation status of kinase related proteins that could account for altered Treg cell migration in RA. Results were verified by migration assays and Western blot analysis of CD4+ T cells from RA patients and from mice with collagen type II induced arthritis. Kinome profiling of CD4+ T cells from RA patients revealed significantly altered post-translational phosphorylation of kinase related proteins, including G-protein-signaling modulator 2 (GPSM2), protein tyrosine kinase 6 (PTK6) and vitronectin precursor (VTNC). These proteins have not been associated with RA until now. We found that GPSM2 expression is reduced in CD4+ T cells from RA patients and is significantly downregulated in experimental autoimmune arthritis following immunization of mice with collagen type II. Interestingly, GPSM2 acts as a promoter of Treg cell migration in healthy individuals. Treatment of RA patients with interleukin-6 receptor (IL-6R) blocking antibodies restores GPSM2 expression, thereby improving Treg cell migration. Our study highlights the potential of multiplex kinase activity arrays as a tool for the identification of RA-related proteins which could serve as targets for novel treatments.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Intracellular Signaling Peptides and Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies, Blocking/metabolism , Cell Movement , Cells, Cultured , Collagen Type II/immunology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred DBA , Phosphorylation , Protein Processing, Post-Translational , Receptors, Interleukin-6/immunology
13.
Int J Hyperthermia ; 38(1): 1174-1187, 2021.
Article in English | MEDLINE | ID: mdl-34374624

ABSTRACT

PURPOSE: This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS: Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS: The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS: The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Hyperthermia, Induced , Algorithms , Animals , Hyperthermia , Magnetic Resonance Imaging , Perfusion , Swine
14.
Int J Hyperthermia ; 37(1): 786-798, 2020.
Article in English | MEDLINE | ID: mdl-32619373

ABSTRACT

Purpose: Pancreatic cancer is typically diagnosed in a late stage with limited therapeutic options. For those patients, ultrasound-guided high-intensity focused ultrasound (US-HIFU) can improve local control and alleviate pain. However, MRI-guided HIFU (MR-HIFU) has not yet been studied extensively in this context. To facilitate related research and accelerate clinical translation, we report a workflow for the in vivo HIFU ablation of the porcine pancreas under MRI guidance.Materials and methods: The pancreases of five healthy German landrace pigs (35-58 kg) were sonicated using a clinical MR-HIFU system. Acoustic access to the pancreas was supported by a specialized diet and a hydrogel compression device for bowel displacement. Organ motion was suspended using periods of apnea. The size of the resulting thermal lesions was assessed using the thermal threshold- and dose profiles, non-perfused volume, and gross examination. The effect of the compression device on beam path length was assessed using MRI imaging.Results: Eight of ten treatments resulted in clearly visible damage in the target tissue upon gross examination. Five treatments resulted in coagulative necrosis. Good agreement between the four metrics for lesion size and a clear correlation between the delivered energy dose and the resulting lesion size were found. The compression device notably shortened the intra-abdominal beam path.Conclusions: We demonstrated a workflow for HIFU treatment of the porcine pancreas in-vivo under MRI-guidance. This development bears significance for the development of MR-guided HIFU interventions on the pancreas as the pig is the preferred animal model for the translation of pre-clinical research into clinical application.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Magnetic Resonance Imaging, Interventional , Animals , Feasibility Studies , Humans , Magnetic Resonance Imaging , Pancreas/diagnostic imaging , Pancreas/surgery , Swine
15.
Int J Hyperthermia ; 37(1): 711-741, 2020.
Article in English | MEDLINE | ID: mdl-32579419

ABSTRACT

The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.


Subject(s)
Hyperthermia, Induced , Neoplasms , Heating , Hot Temperature , Humans , Neoplasms/therapy , Technology
17.
Magn Reson Med ; 83(3): 962-973, 2020 03.
Article in English | MEDLINE | ID: mdl-31544289

ABSTRACT

PURPOSE: To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. METHODS: Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. RESULTS: In 30 minutes, B0 drift led to an apparent temperature change of up to -18°C and -98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and -0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was -1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at -4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. CONCLUSION: FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT.


Subject(s)
Leg/diagnostic imaging , Magnetic Resonance Spectroscopy , Algorithms , Healthy Volunteers , High-Intensity Focused Ultrasound Ablation , Hot Temperature , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Protons , Reproducibility of Results , Thermography , Thermometry
18.
Leukemia ; 34(3): 771-786, 2020 03.
Article in English | MEDLINE | ID: mdl-31690822

ABSTRACT

The proximal DNA damage response kinase ATM is frequently inactivated in human malignancies. Germline mutations in the ATM gene cause Ataxia-telangiectasia (A-T), characterized by cerebellar ataxia and cancer predisposition. Whether ATM deficiency impacts on tumor initiation or also on the maintenance of the malignant state is unclear. Here, we show that Atm reactivation in initially Atm-deficient B- and T cell lymphomas induces tumor regression. We further find a reduced T cell abundance in B cell lymphomas from Atm-defective mice and A-T patients. Using T cell-specific Atm-knockout models, as well as allogeneic transplantation experiments, we pinpoint impaired immune surveillance as a contributor to cancer predisposition and development. Moreover, we demonstrate that Atm-deficient T cells display impaired proliferation capacity upon stimulation, due to replication stress. Altogether, our data indicate that T cell-specific restoration of ATM activity or allogeneic hematopoietic stem cell transplantation may prevent lymphomagenesis in A-T patients.


Subject(s)
Lymphoma/immunology , T-Lymphocytes/immunology , Alleles , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Proliferation , Etoposide/pharmacology , Hematopoietic Stem Cell Transplantation , Lymphoma/metabolism , Mice , Mice, Knockout , T-Lymphocytes/metabolism , Transplantation, Homologous , Treatment Outcome
19.
Eur J Radiol ; 118: 215-222, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31439245

ABSTRACT

PURPOSE: Dual energy CT (DECT) can contribute to the diagnosis of benign and malignant pancreatic lesions. This study examined whether a novel, detector-based spectral CT scanner (SDCT) may improve subjective assessment of different types of pancreatic lesions and if various quantitative maps may improve lesion contrast and differentiation. MATERIALS AND METHODS: 61 consecutive patients who underwent clinical, contrast-agent enhanced, abdominal SDCT scans and showed pancreatic lesions of different origins were included. Subjective image analysis was performed by two readers who assessed image quality, lesion conspicuity and diagnostic confidence on 5-point Likert scales for conventional polyenergetic reconstructions (polyE), virtual monoenergetic images (monoE), virtual non-contrast images, iodine density, iodine overlay, and Z effective (Zeff) maps. Two readers acquired quantitative values from these maps ROI-based from which contrast-to-noise and lesion-to-parenchyma ratios were calculated. RESULTS: MonoE images at low keV levels yielded highest Likert scores regarding lesion conspicuity and reader confidence; iodine overlays facilitated lesion delineation. Inter-observer agreement ranged between substantial and excellent (kappa values 0.73-0.81). Contrast-to-noise-ratios for low keV monoE images were significantly higher, compared to polyE images (e.g. monoE 40 keV p < 0.0001). Marked overlap between PDAC and miscellaneous non-PDAC lesions was present in various spectral reconstructions. CONCLUSIONS: In line with previous studies, monoE images at low keV levels and iodine overlay maps facilitated subjective lesion delineation which was substantiated by the quantitative analysis. Hence, spectral detector CT improves pancreatic lesion conspicuity, while its value for lesion differentiation needs to be further evaluated in larger study cohorts.


Subject(s)
Pancreatic Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Contrast Media , Humans , Iodine , Middle Aged , Observer Variation , Radiographic Image Interpretation, Computer-Assisted/methods , Retrospective Studies , Signal-To-Noise Ratio , Tomography Scanners, X-Ray Computed , Young Adult
20.
Front Pharmacol ; 10: 511, 2019.
Article in English | MEDLINE | ID: mdl-31156434

ABSTRACT

Immune checkpoint inhibition (ICI) targeting the programmed death receptor 1 (PD-1) has shown promising results in the fight against cancer. Systemic anti-tumor reactions due to radiation therapy (RT) can lead to regression of non-irradiated lesions (NiLs), termed "abscopal effect" (AbE). Combination of both treatments can enhance this effect. The aim of this study was to evaluate AbEs during anti-PD-1 therapy and irradiation. We screened 168 patients receiving pembrolizumab or nivolumab at our center. Inclusion criteria were start of RT within 1 month after the first or last application of pembrolizumab (2 mg/kg every 3 weeks) or nivolumab (3 mg/kg every 2 weeks) and at least one metastasis outside the irradiation field. We estimated the total dose during ICI for each patient using the linear quadratic (LQ) model expressed as 2 Gy equivalent dose (EQD2) using α/ß of 10 Gy. Radiological images were required showing progression or no change in NiLs before and regression after completion of RT(s). Images must have been acquired at least 4 weeks after the onset of ICI or RT. The surface areas of the longest diameters of the short- and long-axes of NiLs were measured. One hundred twenty-six out of 168 (75%) patients received ICI and RT. Fifty-three percent (67/126) were treated simultaneously, and 24 of these (36%) were eligible for lesion analysis. AbE was observed in 29% (7/24). One to six lesions (mean = 3 ± 2) in each AbE patient were analyzed. Patients were diagnosed with malignant melanoma (MM) (n = 3), non-small cell lung cancer (NSCLC) (n = 3), and renal cell carcinoma (RCC) (n = 1). They were irradiated once (n = 1), twice (n = 2), or three times (n = 4) with an average total EQD2 of 120.0 ± 37.7 Gy. Eighty-two percent of RTs of AbE patients were applied with high single doses. MM patients received pembrolizumab, NSCLC, and RCC patients received nivolumab for an average duration of 45 ± 35 weeks. We demonstrate that 29% of the analyzed patients showed AbE. Strict inclusion criteria were applied to distinguish the effects of AbE from the systemic effect of ICI. Our data suggest the clinical existence of systemic effects of irradiation under ICI and could contribute to the development of a broader range of cancer treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...