Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35744476

ABSTRACT

Energy harvesting and storage is highly demanded to enhance the lifetime of autonomous systems, such as IoT sensor nodes, avoiding costly and time-consuming battery replacement. However, cost efficient and small-scale energy harvesting systems with reasonable power output are still subjects of current development. In this work, we present a mechanically and magnetically excitable MEMS vibrational piezoelectric energy harvester featuring wafer-level integrated rare-earth micromagnets. The latter enable harvesting of energy efficiently both in resonance and from low-g, low-frequency mechanical energy sources. Under rotational magnetic excitation at frequencies below 50 Hz, RMS power output up to 74.11 µW is demonstrated in frequency up-conversion. Magnetic excitation in resonance results in open-circuit voltages > 9 V and RMS power output up to 139.39 µW. For purely mechanical excitation, the powder-based integration process allows the realization of high-density and thus compact proof masses in the cantilever design. Accordingly, the device achieves 24.75 µW power output under mechanical excitation of 0.75 g at resonance. The ability to load a capacitance of 2.8 µF at 2.5 V within 30 s is demonstrated, facilitating a custom design low-power ASIC.

2.
Micromachines (Basel) ; 13(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35334699

ABSTRACT

A zero-power wakeup scheme for energy-efficient sensor applications is presented in this study based on a piezoelectric MEMS energy harvester featuring wafer-level-integrated micromagnets. The proposed setup overcomes a hybrid assembly of magnets on a chip-level, a major drawback of similar existing solutions. The wakeup device can be excited at low frequencies by frequency up-conversion, both in mechanical contact and contactless methods due to magnetic force coupling, allowing various application scenarios. In a discrete circuit, a wakeup within 30−50 ms is realized in frequency up-conversion at excitation frequencies < 50 Hz. A power loss in the off state of 0.1 nW renders the scheme virtually lossless. The potential extension of battery lifetime compared to cyclical wakeup schemes is discussed for a typical wireless sensor node configuration.

SELECTION OF CITATIONS
SEARCH DETAIL