Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Cell ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38897195

ABSTRACT

The representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages. Our findings reveal a functionally ring-shaped organization of the antennal lobe composed of specific glomerular clusters. This configuration establishes an odor-specific chemotopic representation by encoding different chemical classes and ecologically distinct odors in the form of glomerular rings. The ring-shaped glomerular arrangement, which we confirm by selective targeting of OR70a-expressing sensory neurons, occurs throughout development, and the odor-coding pattern within the glomerular population is consistent across developmental stages. Mechanistically, this unconventional spatial olfactory code reflects the locust-specific and multiplexed glomerular innervation pattern of the antennal lobe.

2.
Front Plant Sci ; 15: 1369543, 2024.
Article in English | MEDLINE | ID: mdl-38633457

ABSTRACT

Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.

3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003319

ABSTRACT

Non-mycorrhizal but beneficial fungi often mitigate (a)biotic stress-related traits in host plants. The underlying molecular mechanisms are mostly still unknown, as in the interaction between the endophytic growth-promoting soil fungus Mortierella hyalina and Arabidopsis thaliana. Here, abiotic stress in the form of nitrogen (N) deficiency was used to investigate the effects of the fungus on colonized plants. In particular, the hypothesis was investigated that fungal infection could influence N deficiency via an interaction with the high-affinity nitrate transporter NRT2.4, which is induced by N deficiency. For this purpose, Arabidopsis wild-type nrt2.4 knock-out and NRT2.4 reporter lines were grown on media with different nitrate concentrations with or without M. hyalina colonization. We used chemical analysis methods to determine the amino acids and phytohormones. Experimental evidence suggests that the fungus does not modulate NRT2.4 expression under N starvation. Instead, M. hyalina alleviates N starvation in other ways: The fungus supplies nitrogen (15N) to the N-starved plant. The presence of the fungus restores the plants' amino acid homeostasis, which was out of balance due to N deficiency, and causes a strong accumulation of branched-chain amino acids. We conclude that the plant does not need to invest in defense and resources for growth are maintained, which in turn benefits the fungus, suggesting that this interaction should be considered a mutualistic symbiosis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mortierella , Arabidopsis Proteins/genetics , Nitrogen/metabolism , Mortierella/metabolism , Nitrates/metabolism , Amino Acids/metabolism , Homeostasis , Gene Expression Regulation, Plant , Anion Transport Proteins/metabolism , Plant Roots/metabolism
5.
Nature ; 607(7919): 617-622, 2022 07.
Article in English | MEDLINE | ID: mdl-35794473

ABSTRACT

Strychnine is a natural product that, through isolation, structural elucidation and synthetic efforts, shaped the field of organic chemistry. Currently, strychnine is used as a pesticide to control rodents1 because of its potent neurotoxicity2,3. The polycyclic architecture of strychnine has inspired chemists to develop new synthetic transformations and strategies to access this molecular scaffold4, yet it is still unknown how plants create this complex structure. Here we report the biosynthetic pathway of strychnine, along with the related molecules brucine and diaboline. Moreover, we successfully recapitulate strychnine, brucine and diaboline biosynthesis in Nicotiana benthamiana from an upstream intermediate, thus demonstrating that this complex, pharmacologically active class of compounds can now be harnessed through metabolic engineering approaches.


Subject(s)
Biosynthetic Pathways , Metabolic Engineering , Strychnine , Biosynthetic Pathways/genetics , Strychnine/analogs & derivatives , Strychnine/biosynthesis , Strychnine/chemistry , Nicotiana/chemistry , Nicotiana/genetics , Nicotiana/metabolism
6.
Front Physiol ; 13: 846732, 2022.
Article in English | MEDLINE | ID: mdl-35309070

ABSTRACT

Many herbivorous insects exploit defense compounds produced by their host plants for protection against predators. Ingested plant defense compounds are absorbed via the gut epithelium and stored in the body, a physiological process that is currently not well understood. Here, we investigated the absorption of plant defense compounds from the gut in the horseradish flea beetle, Phyllotreta armoraciae, a specialist herbivore known to selectively sequester glucosinolates from its brassicaceous host plants. Feeding experiments using a mixture of glucosinolates and other glucosides not found in the host plants showed a rapid and selective uptake of glucosinolates in adult beetles. In addition, we provide evidence that this uptake mainly takes place in the foregut, whereas the endodermal midgut is the normal region of absorption. Absorption via the foregut epithelium is surprising as the apical membrane is covered by a chitinous intima. However, we could show that this cuticular layer differs in its structure and overall thickness between P. armoraciae and a non-sequestering leaf beetle. In P. armoraciae, we observed a thinner cuticle with a less dense chitinous matrix, which might facilitate glucosinolate absorption. Our results show that a selective and rapid uptake of glucosinolates from the anterior region of the gut contributes to the selective sequestration of glucosinolates in P. armoraciae.

7.
Beilstein J Org Chem ; 17: 1313-1322, 2021.
Article in English | MEDLINE | ID: mdl-34136011

ABSTRACT

Symbiosis is a dominant form of life that has been observed numerous times in marine ecosystems. For example, macroalgae coexist with bacteria that produce factors that promote algal growth and morphogenesis. The green macroalga Ulva mutabilis (Chlorophyta) develops into a callus-like phenotype in the absence of its essential bacterial symbionts Roseovarius sp. MS2 and Maribacter sp. MS6. Spatially resolved studies are required to understand symbiont interactions at the microscale level. Therefore, we used mass spectrometry profiling and imaging techniques with high spatial resolution and sensitivity to gain a new perspective on the mutualistic interactions between bacteria and macroalgae. Using atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionisation high-resolution mass spectrometry (AP-SMALDI-HRMS), low-molecular-weight polar compounds were identified by comparative metabolomics in the chemosphere of Ulva. Choline (2-hydroxy-N,N,N-trimethylethan-1-aminium) was only determined in the alga grown under axenic conditions, whereas ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was found in bacterial presence. Ectoine was used as a metabolic marker for localisation studies of Roseovarius sp. within the tripartite community because it was produced exclusively by these bacteria. By combining confocal laser scanning microscopy (cLSM) and AP-SMALDI-HRMS, we proved that Roseovarius sp. MS2 settled mainly in the rhizoidal zone (holdfast) of U. mutabilis. Our findings provide the fundament to decipher bacterial symbioses with multicellular hosts in aquatic ecosystems in an ecologically relevant context. As a versatile tool for microbiome research, the combined AP-SMALDI and cLSM imaging analysis with a resolution to level of a single bacterial cell can be easily applied to other microbial consortia and their hosts. The novelty of this contribution is the use of an in situ setup designed to avoid all types of external contamination and interferences while resolving spatial distributions of metabolites and identifying specific symbiotic bacteria.

8.
Curr Biol ; 31(15): 3382-3390.e7, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34111404

ABSTRACT

Numerous hematophagous insects are attracted to ammonia, a volatile released in human sweat and breath.1-3 Low levels of ammonia also attract non-biting insects such as the genetic model organism Drosophila melanogaster and several species of agricultural pests.4,5 Two families of ligand-gated ion channels function as olfactory receptors in insects,6-10 and studies have linked ammonia sensitivity to a particular olfactory receptor in Drosophila.5,11,12 Given the widespread importance of ammonia to insect behavior, it is surprising that the genomes of most insects lack an ortholog of this gene.6 Here, we show that canonical olfactory receptors are not necessary for responses to ammonia in Drosophila. Instead, we demonstrate that a member of the ancient electrogenic ammonium transporter family, Amt, is likely a new type of olfactory receptor. We report two hitherto unidentified olfactory neuron populations that mediate neuronal and behavioral responses to ammonia in Drosophila. Their endogenous ammonia responses are lost in Amt mutant flies, and ectopic expression of either Drosophila or Anopheles Amt confers ammonia sensitivity. These results suggest that Amt is the first transporter known to function as an olfactory receptor in animals and that its function may be conserved across insect species.


Subject(s)
Ammonium Compounds , Drosophila Proteins , Drosophila melanogaster , Olfactory Receptor Neurons , Receptors, Odorant , Ammonia , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Receptors, Odorant/genetics
9.
Sci Rep ; 11(1): 3747, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580172

ABSTRACT

Insect odorant receptors (ORs) detect volatile chemical cues with high sensitivity. These ORs operate as ligand-gated ion channels and are formed by heptahelical OrX and Orco (co-receptor) proteins. A highly conserved calmodulin (CaM) binding site (CBS) 336SAIKYWVER344 within the second intracellular loop of Drosophila melanogaster Orco constitutes a target for regulating OR performance. Here we asked how a point mutation K339N in this CBS affects the olfactory performance of Drosophila melanogaster. We first asked how this mutation would affect the odor responses of olfactory sensory neurons (OSNs). Using Ca2+ imaging in an ex-vivo antenna preparation, we activated all OR (OrX/Orco) expressing neurons using the synthetic agonist VUAA1. In a next attempt, we restricted the OR spectrum to Or22a expressing neurons (Or22a/Orco) and stimulated these OSNs with the ligand ethyl hexanoate. In both approaches, we found that flies carrying the K339N point mutation in Orco display a reduced olfactory response. We also found that the mutation abolishes the capability of OSNs to sensitize by repeated weak odor stimuli. Next, we asked whether OrcoK339N might affect the odor localization performance. Using a wind tunnel bioassay, we found that odor localization in flies carrying the OrcoK339N mutation was severely diminished.


Subject(s)
Calmodulin/metabolism , Drosophila Proteins/genetics , Receptors, Odorant/metabolism , Animals , Binding Sites , Calmodulin/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Male , Odorants , Olfactory Perception/physiology , Olfactory Receptor Neurons/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Binding , Receptors, Odorant/genetics , Smell/physiology , Thioglycolates/pharmacology , Triazoles/pharmacology
10.
Plant Cell Environ ; 44(3): 900-914, 2021 03.
Article in English | MEDLINE | ID: mdl-33300188

ABSTRACT

Flavonoids may mediate UV protection in plants either by screening of harmful radiation or by minimizing the resulting oxidative stress. To help distinguish between these alternatives, more precise knowledge of flavonoid distribution is needed. We used confocal laser scanning microscopy (cLSM) with the "emission fingerprinting" feature to study the cellular and subcellular distribution of flavonoid glucosides in the giant duckweed (Spirodela polyrhiza), and investigated the fitness effects of these compounds under natural UV radiation and copper sulphate addition (oxidative stress) using common garden experiments indoors and outdoors. cLSM "emission fingerprinting" allowed us to individually visualize the major dihydroxylated B-ring-substituted flavonoids, luteolin 7-O-glucoside and luteolin 8-C-glucoside, in cross-sections of the photosynthetic organs. While luteolin 8-C-glucoside accumulated mostly in the vacuoles and chloroplasts of mesophyll cells, luteolin 7-O-glucoside was predominantly found in the vacuoles of epidermal cells. In congruence with its cellular distribution, the mesophyll-associated luteolin 8-C-glucoside increased plant fitness under copper sulphate addition but not under natural UV light treatment, whereas the epidermis-associated luteolin 7-O-glucoside tended to increase fitness under both stresses across chemically diverse genotypes. Taken together, we demonstrate that individual flavonoid glucosides have distinct cellular and subcellular locations and promote duckweed fitness under different abiotic stresses.


Subject(s)
Aquatic Organisms/metabolism , Araceae/metabolism , Flavonoids/metabolism , Glucosides/metabolism , Aquatic Organisms/physiology , Araceae/physiology , Flavonoids/physiology , Fluorescence , Microscopy, Confocal , Oxidative Stress , Stress, Physiological , Ultraviolet Rays
11.
Phytopathology ; 111(4): 703-712, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32997606

ABSTRACT

Napier grass stunt (NGS) phytoplasma, a phloem-limited bacterium, infects Napier grass leading to severe yield losses in East Africa. The infected plants are strongly inhibited in growth and biomass production. In this study, phytoplasma-induced morphological changes of the vascular system and physiological changes were analyzed and compared with uninfected plants. The study showed that the phytoplasmas are more abundant in source leaves and range from 103 bacteria/µg total DNA in infected roots to 106 in mature Napier grass leaves. Using microscopical, biochemical, and physiological tools, we demonstrated that the ultrastructure of the phloem and sieve elements is severely altered in the infected plants, which results in the reduction of both the mass flow and the translocation of photoassimilates in the infected leaves. The reduced transport rate inhibits the photochemistry of photosystem II in the infected plants, which is accompanied by loss of chloroplastic pigments in response to the phytoplasma infection stress eventually resulting in yellowing of diseased plants. The phytoplasma infection stress also causes imbalances in the levels of defense-related antioxidants, glutathione, ascorbic acid, reactive oxygen species (ROS), and-in particular-hydrogen peroxide. This study shows that the infection of NGS phytoplasma in the phloem of Napier grass has an impact on the primary metabolism and activates a ROS-dependent defense response.


Subject(s)
Phytoplasma , Phloem , Phytoplasma Disease , Plant Diseases , Plant Leaves
12.
Sci Adv ; 6(25): eaba5279, 2020 06.
Article in English | MEDLINE | ID: mdl-32704542

ABSTRACT

Communication mechanisms underlying the sexual isolation of species are poorly understood. Using four subspecies of Drosophila mojavensis as a model, we identify two behaviorally active, male-specific pheromones. One functions as a conserved male antiaphrodisiac in all subspecies and acts via gustation. The second induces female receptivity via olfaction exclusively in the two subspecies that produce it. Genetic analysis of the cognate receptor for the olfactory pheromone indicates an important role for this sensory pathway in promoting sexual isolation of subspecies, in combination with auditory signals. Unexpectedly, the peripheral sensory pathway detecting this pheromone is conserved molecularly, physiologically, and anatomically across subspecies. These observations imply that subspecies-specific behaviors arise from differential interpretation of the same peripheral cue, reminiscent of sexually conserved detection but dimorphic interpretation of male pheromones in Drosophila melanogaster. Our results reveal that, during incipient speciation, pheromone production, detection, and interpretation do not necessarily evolve in a coordinated manner.


Subject(s)
Drosophila melanogaster , Sex Attractants , Animals , Drosophila/metabolism , Drosophila melanogaster/physiology , Female , Male , Olfactory Pathways , Pheromones/genetics , Pheromones/metabolism , Sex Attractants/physiology , Sexual Behavior, Animal/physiology
13.
Elife ; 92020 06 30.
Article in English | MEDLINE | ID: mdl-32602834

ABSTRACT

The examination of phylogenetic and phenotypic characteristics of the nervous system, such as behavior and neuroanatomy, can be utilized as a means to assess speciation. Recent studies have proposed a fundamental tradeoff between two sensory organs, the eye and the antenna. However, the identification of ecological mechanisms for this observed tradeoff have not been firmly established. Our current study examines several monophyletic species within the obscura group, and asserts that despite their close relatedness and overlapping ecology, they deviate strongly in both visual and olfactory investment. We contend that both courtship and microhabitat preferences support the observed inverse variation in these sensory traits. Here, this variation in visual and olfactory investment seems to provide relaxed competition, a process by which similar species can use a shared environment differently and in ways that help them coexist. Moreover, that behavioral separation according to light gradients occurs first, and subsequently, courtship deviations arise.


Subject(s)
Arthropod Antennae/physiology , Compound Eye, Arthropod/physiology , Drosophila/genetics , Drosophila/physiology , Genetic Speciation , Sexual Behavior, Animal , Animals , Courtship , Ecology , Ecosystem , Female , Image Processing, Computer-Assisted , Male , Phenotype , Phylogeny , Smell , Species Specificity , Vision, Ocular , Wings, Animal/physiology
14.
Arthropod Struct Dev ; 56: 100932, 2020 May.
Article in English | MEDLINE | ID: mdl-32375099

ABSTRACT

Endoparasitic larval stages of Eoxenos laboulbenei were documented with different techniques, with a main focus on the male tertiary larva. Two discrete endoparasitic stages occur, the secondary and the tertiary larva. The presence of large compound eyes and externally visible wing buds in the tertiary larva is a unique feature within Holometabola. The brain with large optic lobes is followed by a single postcephalic ganglionic complex. The cephalic musculature is greatly reduced but pharyngeal dilators and muscles associated with the mouth field are present. Postcephalic sclerites are absent except for the pronotum. The segmented legs bear filiform pretarsal claws. The indirect flight muscles fill up a large part of the metathorax. The 10-segmented abdomen lacks appendages. Pleural folds are present on the thorax and abdomen. The digestive tract is characterized by a very short oesophagus. The large midgut and the narrow hindgut are disconnected. Six short Malpighian tubules are present. Large testes fill out almost the entire abdomen. In contrast to the tertiary larva, the muscles of the secondary larva are not fully differentiated. Cephalic appendages are present as bud-shaped anlagen. The legs lack a pretarsal claw. The developmental transformations are outlined and discussed, also with respect to phylogenetic implications.


Subject(s)
Holometabola/anatomy & histology , Animals , Croatia , Female , Holometabola/growth & development , Larva/anatomy & histology , Larva/growth & development , Male
15.
Nat Commun ; 11(1): 1698, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32235824

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
eNeuro ; 7(1)2020.
Article in English | MEDLINE | ID: mdl-31888962

ABSTRACT

Optical imaging of intracellular Ca2+ influx as a correlate of neuronal excitation represents a standard technique for visualizing spatiotemporal activity of neuronal networks. However, the information-processing properties of single neurons and neuronal circuits likewise involve inhibition of neuronal membrane potential. Here, we report spatially resolved optical imaging of odor-evoked inhibitory patterns in the olfactory circuitry of Drosophila using a genetically encoded fluorescent Cl- sensor. In combination with the excitatory component reflected by intracellular Ca2+ dynamics, we present a comprehensive functional map of both odor-evoked neuronal activation and inhibition at different levels of olfactory processing. We demonstrate that odor-evoked inhibition carried by Cl- influx is present both in sensory neurons and second-order projection neurons (PNs), and is characterized by stereotypic, odor-specific patterns. Cl--mediated inhibition features distinct dynamics in different neuronal populations. Our data support a dual role of inhibitory neurons in the olfactory system: global gain control across the neuronal circuitry and glomerulus-specific inhibition to enhance neuronal information processing.


Subject(s)
Drosophila Proteins , Odorants , Olfactory Receptor Neurons , Receptors, Odorant , Animals , Drosophila , Drosophila Proteins/metabolism , Female , Membrane Potentials , Olfactory Pathways/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism , Smell
17.
Nat Commun ; 10(1): 4938, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666506

ABSTRACT

Flagellated oomycetes frequently infect unicellular algae, thus limiting their proliferation. Here we show that the marine oomycete Lagenisma coscinodisci rewires the metabolome of the bloom-forming diatom Coscinodiscus granii, thereby promoting infection success. The algal alkaloids ß-carboline and 4-carboxy-2,3,4,9-tetrahydro-1H-ß-carboline are induced during infection. Single-cell profiling with AP-MALDI-MS and confocal laser scanning microscopy reveals that algal carbolines accumulate in the reproductive form of the parasite. The compounds arrest the algal cell division, increase the infection rate and induce plasmolysis in the host. Our results indicate that the oomycete manipulates the host metabolome to support its own multiplication.


Subject(s)
Carbolines/metabolism , Diatoms/metabolism , Host-Parasite Interactions , Infections/metabolism , Oomycetes/metabolism , Alkaloids/metabolism , Cell Division , Diatoms/parasitology , Metabolome , Microscopy, Confocal , Oomycetes/physiology , Principal Component Analysis , Single-Cell Analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Front Physiol ; 10: 343, 2019.
Article in English | MEDLINE | ID: mdl-31001138

ABSTRACT

Herbivorous insects mainly rely on their sense of taste to decode the chemical composition of potential hosts in close range. Beetles for example contact and scan leaves with their tarsi, mouthparts and antennal tips, i.e., appendages equipped with gustatory sensilla, among other sensillum types. Gustatory neurons residing in such uniporous sensilla detect mainly non-volatile compounds that contribute to the behavioral distinction between edible and toxic plants. However, the identification of gustatory sensilla is challenging, because an appendage often possesses many sensilla of distinct morphological and physiological types. Using the specialized poplar leaf beetle (Chrysomela populi, Chrysomelidae), here we show that cuticular autofluorescence scanning combined with electron microscopy facilitates the identification of antennal gustatory sensilla and their differentiation into two subtypes. The gustatory function of sensilla chaetica was confirmed by single sensillum tip-recordings using sucrose, salicin and salt. Sucrose and salicin were found at higher concentrations in methanolic leaf extracts of poplar (Populus nigra) as host plant compared to willow (Salix viminalis) as control, and were found to stimulate feeding in feeding choice assays. These compounds may thus contribute to the observed preference for poplar over willow leaves. Moreover, these gustatory cues benefited the beetle's performance since weight gain was significantly higher when C. populi were reared on leaves of poplar compared to willow. Overall, our approach facilitates the identification of insect gustatory sensilla by taking advantage of their distinct fluorescent properties. This study also shows that a specialist beetle selects the plant species that provides optimal development, which is partly by sensing some of its characteristic non-volatile metabolites via antennal gustatory sensilla.

19.
Nat Commun ; 10(1): 1162, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858374

ABSTRACT

Divergent populations across different environments are exposed to critical sensory information related to locating a host or mate, as well as avoiding predators and pathogens. These sensory signals generate evolutionary changes in neuroanatomy and behavior; however, few studies have investigated patterns of neural architecture that occur between sensory systems, or that occur within large groups of closely-related organisms. Here we examine 62 species within the genus Drosophila and describe an inverse resource allocation between vision and olfaction, which we consistently observe at the periphery, within the brain, as well as during larval development. This sensory variation was noted across the entire genus and appears to represent repeated, independent evolutionary events, where one sensory modality is consistently selected for at the expense of the other. Moreover, we provide evidence of a developmental genetic constraint through the sharing of a single larval structure, the eye-antennal imaginal disc. In addition, we examine the ecological implications of visual or olfactory bias, including the potential impact on host-navigation and courtship.


Subject(s)
Brain/physiology , Drosophila/physiology , Sexual Behavior, Animal/physiology , Smell/physiology , Vision, Ocular/physiology , Animals , Animals, Genetically Modified , Biological Evolution , Female , Imaginal Discs/growth & development , Larva/growth & development , Male , Phylogeny , Spatial Navigation/physiology
20.
Front Microbiol ; 10: 380, 2019.
Article in English | MEDLINE | ID: mdl-30915043

ABSTRACT

Auxin (indole-3-acetic acid, IAA) is an important phytohormone involved in root growth and development. Root-interacting beneficial and pathogenic fungi utilize auxin and its target genes to manipulate the performance of their hosts for their own needs. In order to follow and visualize auxin effects in fungi-colonized Arabidopsis roots, we used the dual auxin reporter construct DR5::EGFP-DR5v2::tdTomato and fluorescence microscopy as well as LC-MS-based phytohormone analyses. We demonstrate that the beneficial endophytic fungi Piriformospora indica and Mortierella hyalina produce and accumulate IAA in their mycelia, in contrast to the phytopathogenic biotrophic fungus Verticillium dahliae and the necrotrophic fungus Alternaria brassicicola. Within 3 h after exposure of Arabidopsis roots to the pathogens, the signals of the auxin-responsive reporter genes disappeared. When exposed to P. indica, significantly higher auxin levels and stimulated expression of auxin-responsive reporter genes were detected both in lateral root primordia and the root elongation zone within 1 day. Elevated auxin levels were also present in the M. hyalina/Arabidopsis root interaction, but no downstream effects on auxin-responsive reporter genes were observed. However, the jasmonate level was strongly increased in the colonized roots. We propose that the lack of stimulated root growth upon infection with M. hyalina is not caused by the absence of auxin, but an inhibitory effect mediated by high jasmonate content.

SELECTION OF CITATIONS
SEARCH DETAIL
...