Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 9875, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972570

ABSTRACT

In-planta mechanisms of biochar (BC)-mediated improved growth were evaluated by examining oxidative stress, metabolic, and hormonal changes of Arabidopsis wild-type plants under basal or acute heat stress (-HS/ + HS) conditions with or without BC (+ BC/-BC). The oxidative stress was evaluated by using Arabidopsis expressing redox-sensitive green fluorescent protein in the plastids (pla-roGFP2). Fresh biomass and inflorescence height were greater in + BC(‒HS) plants than in the -BC(‒HS) plants, despite similar leaf nutrient levels, photosystem II (PSII) maximal efficiencies and similar oxidative poise. Endogenous levels of jasmonic and abscisic acids were higher in the + BC(‒HS) treatment, suggesting their role in growth improvement. HS in ‒BC plants caused reductions in inflorescence height and PSII maximum quantum yield, as well as significant oxidative stress symptoms manifested by increased lipid peroxidation, greater chloroplast redox poise (oxidized form of roGFP), increased expression of DNAJ heat shock proteins and Zn-finger genes, and reduced expression of glutathione-S-transferase gene in addition to higher abscisic acid and salicylic acid levels. Oxidative stress symptoms were significantly reduced by BC. Results suggest that growth improvements by BC occurring under basal and HS conditions are induced by acclimation mechanisms to 'microstresses' associated with basal growth and to oxidative stress of HS, respectively.


Subject(s)
Arabidopsis/physiology , Charcoal/chemistry , Crop Production/methods , Soil/chemistry , Thermotolerance/physiology , Abscisic Acid/metabolism , Animals , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cattle , Chloroplasts/metabolism , Inflorescence/growth & development , Inflorescence/physiology , Manure , Oxidative Stress , Plants, Genetically Modified , Salicylic Acid/metabolism
2.
ACS Omega ; 5(50): 32490-32497, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376886

ABSTRACT

Global warming has prompted a search for new materials that capture and sink carbon dioxide (CO2). Biochar is a derivative of biomass pyrolysis and a carbon sink mainly used to improve crop production. This work explores the underlying mechanism behind biochar's electric conductivity using a wide range of feedstocks and its combination with a binder (gypsum). This gypsum-biochar composite exhibits decreased density and flexural moduli with increasing biochar content, particularly after 20% w/w. Gypsum-biochar drywall-like composite prototypes display increasing shielding efficiency mostly in the microwave range as a function of biochar content, differing from other conventional metal (copper) and synthetic carbon-based materials. This narrow range of electromagnetic interference (EMI) shielding is attributed to natural alignment (isotropy) of the carbon ultrastructure (e.g., lignin) induced by heat and intrinsic interconnectivity in addition to traditional phenomena such as dissipation of surface currents and polarization in the electric field. These biomass-derived products could be used as sustainable lightweight materials in a future bio-based economy.

3.
Sci Rep ; 10(1): 13934, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811849

ABSTRACT

Molecular mechanisms associated with biochar-elicited suppression of soilborne plant diseases and improved plant performance are not well understood. A stem base inoculation approach was used to explore the ability of biochar to induce systemic resistance in tomato plants against crown rot caused by a soilborne pathogen, Fusarium oxysporum f. sp. radicis lycopersici. RNA-seq transcriptome profiling of tomato, and experiments with jasmonic and salycilic acid deficient tomato mutants, were performed to elucidate the in planta molecular mechanisms involved in induced resistance. Biochar (produced from greenhouse plant wastes) was found to mediate systemic resistance against Fusarium crown rot and to simultaneously improve tomato plant growth and physiological parameters by up to 63%. Transcriptomic analysis (RNA-seq) of tomato demonstrated that biochar had a priming effect on gene expression and upregulated the pathways and genes associated with plant defense and growth such as jasmonic acid, brassinosteroids, cytokinins, auxin and synthesis of flavonoid, phenylpropanoids and cell wall. In contrast, biosynthesis and signaling of the salicylic acid pathway was downregulated. Upregulation of genes and pathways involved in plant defense and plant growth may partially explain the significant disease suppression and improvement in plant performance observed in the presence of biochar.


Subject(s)
Charcoal/pharmacology , Disease Resistance/genetics , Solanum lycopersicum/genetics , Charcoal/chemistry , Cyclopentanes/metabolism , Disease Resistance/drug effects , Fusarium/pathogenicity , Fusarium/physiology , Gene Expression Profiling/methods , Oxylipins/metabolism , Plant Diseases , Plant Roots , Salicylic Acid/metabolism , Transcriptome/genetics
4.
Chemosphere ; 243: 125332, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31751928

ABSTRACT

The potential of biochar to enhance phytorestoration of hexavalent chromium [Cr(VI)]-contaminated soils was investigated. Rooted cuttings of Ficus elastica Roxb. Ex Hornem were transplanted to soil treated with 0 or 25 mg kg-1 Cr(VI), ‒Cr and +Cr designations respectively, and amended with cattle manure-derived biochar at 0, 10 and 50 g kg-1. Plants were grown for 180 d in a temperature-controlled greenhouse. In the ‒Cr treatment, biochar addition enhanced plant growth without affecting plant water status, leaf nutrient levels, photochemical efficiency, or hormone levels. In the absence of biochar, Ficus growth in the +Cr treatment was stunted, exhibiting decreased leaf and root relative water content and photochemical efficiency. Adding biochar to +Cr soil resulted in decreased Cr uptake into plant tissues and alleviated the toxic effects of soil Cr(VI) on plant growth and physiology, including decreased leaf lipid peroxidation. High-resolution electron microscopy and spectroscopy elucidated the biochar role in decreasing Cr mobility, bioavailability, and phytotoxicity. Spectroscopic evidence is suggestive that biochar mediated the reduction of Cr(VI) to Cr(III), which was subsequently incorporated into organomineral agglomerates formed at biochar surfaces. The dual function of biochar in improving F. elastica performance and detoxifying Cr(VI) demonstrates that biochar holds much potential for enhancing phytorestoration of Cr(VI)-contaminated soils.


Subject(s)
Charcoal/chemistry , Chromium/toxicity , Ficus/physiology , Soil Pollutants/toxicity , Animals , Biological Availability , Cattle , Chromium/chemistry , Manure , Plant Development , Rubber , Soil/chemistry , Soil Pollutants/chemistry
5.
Environ Sci Pollut Res Int ; 27(1): 691-703, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31808096

ABSTRACT

When biochar (BC) is applied to soil, one process that can alter its properties and contaminant sorption is the leaching of minerals and dissolved organic carbon (DOC). This study investigated changes in properties of three BCs (cattle manure, grain husk, and wood chips), due to leaching, and the subsequent impact on sorption of trichloroethylene (TCE) and tetrachloroethylene (PCE). The manure-derived BC released 27.4 mg g-1 DOC, which is over ten times more than that measured for the two plant-based BCs (2.5 and 1.5 mg g-1 DOC for grain husk and wood chips, respectively). In all leachates, potassium is the dominant cation, whereas chloride, sulfate, and phosphate are the main anions. In total, the manure-derived biochar released the highest sum of total ions (73.1 mg g-1), followed by BC produced from grain husk (15.5 mg g-1) and wood chips (1.2 mg g-1). Leaching increased external surface area, mesopore volume, and hydrophobicity of the manure-derived BC and decreased its polarity. This enhanced sorption via partitioning. In plant-based BCs, micropore volume and size distribution were altered, most likely through the un-blocking of pores, causing increased sorption via pore-filling for both TCE and PCE. The results indicate that, depending on feedstock material, BC leaching can alter the environmental fate of organic compounds.


Subject(s)
Charcoal/chemistry , Environmental Pollutants/chemistry , Adsorption , Edible Grain , Hydrophobic and Hydrophilic Interactions , Manure , Soil , Trichloroethylene , Wood
6.
Sci Total Environ ; 626: 953-961, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29898560

ABSTRACT

Adding biochar to Zn-contaminated soil can immobilize excess Zn and promote plant biomass growth. This was seen previously over the course of a 180-day planted pot trial involving two types of biochar (cattle manure, CM, and grain husk, GH) in a Zn-contaminated soil. Both biochars alleviated Zn-induced phytotoxicity to Ficus by immobilizing Zn and reducing its uptake by the plant, but to different extents. The aim of the current study was to delve into the in-soil mechanisms involved in biochar-mediated Zn immobilization. Biochar particles were excavated from the pot soils. Fresh and aged biochar particles were examined by high-resolution scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), field-emission electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The physical and chemical properties of the biochars had changed over the 180 days. SEM-EDS and EPMA indicated that organo-mineral micro-agglomerates had formed on biochar surfaces and in pores. Some of the Zn immobilized by the biochars was bound in the organo-mineral complexes of these agglomerates. XPS and FTIR showed that the complexes had a high concentration of oxygenated functional groups which facilitated Zn binding and encapsulation. The micro-agglomerates were similar in structure and composition to those observed on biochars having resided for much longer times in soils, or having been subjected to accelerated aging. Overall, Zn immobilization by the CM biochar was greater than by the GH biochar, due to its higher alkalinity, higher concentration of available negatively charged groups, and greater accretion of organo-mineral layers. These findings are suggestive that biochar-assisted phytorestoration of heavy metal-contaminated soils can be optimized through selection of biochar having such traits. It is hypothesized that metals may be continually taken up in such micro-agglomerates, since they continue to form over the lifetime of the biochar in the soil.


Subject(s)
Charcoal/chemistry , Soil Pollutants/chemistry , Zinc/chemistry , Biomass , Environmental Restoration and Remediation , Manure , Metals, Heavy/chemistry , Soil/chemistry
7.
New Phytol ; 219(1): 363-377, 2018 07.
Article in English | MEDLINE | ID: mdl-29417582

ABSTRACT

Biochar can enhance plant growth and reduce diseases, but frequently the optimal doses for these two benefits do not coincide. An approach is needed that will extend the range of biochar doses resulting in a concurrence of maximum benefits for both plant productivity and disease suppression. A biochar-amended growth medium was pre-conditioned by pre-planting fertigation in order to enhance the indigenous microbial community structure and activity. Cucumber plant performance and resistance against damping-off caused by Pythium aphanidermatum were monitored. Soil microbial activity, as well as bacterial and fungal community structure, were assessed by high-throughput 16S rRNA and ITS1 gene amplicon sequencing. Pre-conditioning enhanced the efficacy of biochar for improving plant performance and suppressing soilborne disease through enriching the medium in beneficial soil microorganisms, increasing microbial and fungal diversity and activity, and eliminating biochar phytotoxic compounds. The pre-conditioning process brought dose-response curves for both growth and disease resistance into sync, resulting in maximum benefits for both. These findings suggest that pre-conditioning should be incorporated as an important stage during biochar application in soil and soilless media.


Subject(s)
Charcoal/pharmacology , Cucumis sativus/microbiology , Plant Diseases/prevention & control , Pythium/pathogenicity , Soil Microbiology , Bacteria/genetics , Cucumis sativus/growth & development , Mycobiome/genetics , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics
8.
J Sci Food Agric ; 98(2): 495-503, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28612389

ABSTRACT

BACKGROUND: The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L. (lettuce) grown in the absence of fertilizer employed the 3-year-old field trial soils to determine if biochar treatments contributed to soil intrinsic fertility. RESULTS: Biochar amendments resulted in a significant increase in the number and weight of pepper fruits over 3 years. Concomitant with the increased yield, biochar significantly decreased the severity of powdery mildew (Leveillula taurica) disease and broad mite (Polyphagotarsonemus latus) pest infestation. Biochar additions resulted in increased soil organic matter but did not influence the pH, electrical conductivity or soil or plant mineral nutrients. Intrinsic fertility experiments with lettuce showed that two of the four biochar-treated field soils had significant positive impacts on lettuce fresh weight and total chlorophyll, carotenoid and anthocyanin contents. CONCLUSION: Biochar-based soil management can enhance the functioning of intensive, commercial, net house production of peppers under the tested conditions, resulting in increased crop yield and plant resistance to disease over several years. © 2017 Society of Chemical Industry.


Subject(s)
Capsicum/growth & development , Charcoal/chemistry , Crop Production/methods , Plant Diseases/prevention & control , Ascomycota/physiology , Biomass , Capsicum/microbiology , Crop Production/instrumentation , Desert Climate , Disease Resistance , Fertilizers/analysis , Nitrogen/metabolism , Plant Diseases/microbiology , Soil/chemistry
9.
Sci Total Environ ; 618: 1210-1223, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29126641

ABSTRACT

Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting. We have compared non-composted biochar (BC) with composted biochar (BCC) to elucidate the differences which may have led to these results. The results of our investigation provide evidence for a complex series of reactions during composting, where dissolved nutrients are first taken up into biochar pores along a concentration gradient and through capillary action, followed by surface sorption and retention processes which block biochar pores and result in deposition of a nutrient-rich organomineral (plaque) layer. The lack of such pretreatment in the BC samples would render it reactive towards nutrients in a soil-fertilizer system, making it a competitor for, rather than provider of, nutrients for plant growth.

10.
Sci Total Environ ; 618: 188-198, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29128767

ABSTRACT

Zinc (Zn) immobilization by two distinct biochars in soil, together with concomitant alleviation of phytotoxic responses in Ficus elastica Roxb. ex Hornem., were examined. Rooted cuttings of F. elastica were grown in 880mgkg-1 Zn-spiked sandy soil amended with grain husk (GH) or cattle manure (CM) biochar at 0, 10, 30 and 50gkg-1 soil for a period of 6months. Addition of both GH and CM biochars had significant positive impacts on physiological parameters such as plant growth, leaf relative water content, photosynthetic pigments and leaf gas exchange characteristics. The responses to addition of CM biochar were significantly better than to GH biochar. Lipid peroxidation declined in leaves of plants grown in Zn-contaminated, biochar-amended soil. This was confirmed by luminescence and Fourier transform infrared analysis of the leaf material. Biochar significantly reduced the availability of soil Zn, as evidenced by lower concentrations of Zn in leaves and leachates of biochar treated plants relative to control plants. These findings show that biochar can effectively immobilize soil Zn, and as a result, alleviate Zn phytotoxicity by reducing its uptake and accumulation in the plant. Adding biochar to soils contaminated with metals thus holds promise as a means of restoring blighted lands.


Subject(s)
Charcoal , Ficus/drug effects , Soil Pollutants/toxicity , Zinc/toxicity , Animals , Lipid Peroxidation , Soil/chemistry
11.
Front Plant Sci ; 8: 939, 2017.
Article in English | MEDLINE | ID: mdl-28638393

ABSTRACT

This study tested whether soil-applied biochar can impact the seed germination and attachment of root parasitic weeds. Three hypotheses were evaluated: (i) biochar adsorbs host-exuded signaling molecules; (ii) biochar activates plants' innate system-wide defenses against invasion by the parasite; and (iii) biochar has a systemic influence on the amount of seed germination stimulant produced or released by the host plant. Three types of experiments were performed: (I) pot trials with tomato (Solanum lycopersicum) infested with Phelipanche aegyptiaca PERS. (Egyptian broomrape) and three different types of biochar at concentrations ranging from 0 to 1.5% weight, wherein tomato plant biomass, P. aegyptiaca biomass, and number of P. aegyptiaca-tomato root attachments were quantified; (II) split-root biochar/no-biochar experiments under hydroponic growing conditions performed in polyethylene bags with tomato plant rootings, wherein P. aegyptiaca seed germination percentage and radicle attachment numbers were quantified; and (III) germination trials, wherein the effect of biochar adsorption of GR-24 (artificial germination stimulant) on P. aegyptiaca seed germination was quantified. Addition of biochar to the pot soil (Experiment I) resulted in lower levels of P. aegyptiaca infection in the tomato plants, mainly through a decrease in the number of P. aegyptiaca attachments. This led to improved tomato plant growth. In Experiment II, P. aegyptiaca seed germination percentage decreased in the biochar-treated root zone as compared with the no-biochar control root zone; P. aegyptiaca radicle attachment numbers decreased accordingly. This experiment showed that biochar did not induce a systemic change in the activity of the stimulant molecules exuded by the tomato roots, toxicity to the radicles, or a change in the ability of the radicles to penetrate the tomato roots. The major cause for the decrease in germination percentage was physical adsorption of the stimulant molecule by the biochar (Experiment III). Adding biochar to soil to reduce infections by root parasitic weeds is an innovative means of control with the potential to become an important strategy both for non-chemical treatment of this family of pests, and for enhancing the economic feasibility of the pyrolysis/biochar platform. This platform is often viewed as one of a handful of credible strategies for helping to mitigate climate change.

12.
Sci Rep ; 7: 44382, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287177

ABSTRACT

Biochar, in addition to sequestering carbon, ameliorating soil, and improving plant performance, can impact foliar and soilborne plant diseases. Nevertheless, the mechanisms associated with suppression of soilborne diseases and improved plant performances are not well understood. This study is designed to establish the relationships between biochar-induced changes in rhizosphere microbial community structure, taxonomic and functional diversity, and activity with soilborne disease suppression and enhanced plant performance in a comprehensive fashion. Biochar suppressed Fusarium crown and root-rot of tomato and simultaneously improved tomato plant growth and physiological parameters. Furthermore, biochar reduced Fusarium root colonization and survival in soil, and increased the culturable counts of several biocontrol and plant growth promoting microorganisms. Illumina sequencing analyses of 16S rRNA gene revealed substantial differences in rhizosphere bacterial taxonomical composition between biochar-amended and non-amended treatments. Moreover, biochar amendment caused a significant increase in microbial taxonomic and functional diversity, microbial activities and an overall shift in carbon-source utilization. High microbial taxonomic and functional diversity and activity in the rhizosphere has been previously associated with suppression of diseases caused by soilborne pathogens and with plant growth promotion, and may collectively explain the significant reduction of disease and improvement in plant performance observed in the presence of biochar.


Subject(s)
Charcoal/pharmacology , Fertilizers , Fusarium/drug effects , Microbial Consortia/drug effects , Solanum lycopersicum/drug effects , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/growth & development , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/growth & development , Fusarium/growth & development , Fusarium/pathogenicity , High-Throughput Nucleotide Sequencing , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Microbial Consortia/genetics , Plant Diseases/prevention & control , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil/chemistry , Soil Microbiology
13.
New Phytol ; 213(3): 1393-1404, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27780299

ABSTRACT

The 'biochar effect' depicts a phenomenon in which biochar soil amendment enhances plant performance by promoting growth and suppressing disease. Although this phenomenon has been observed in numerous studies, the mode of action that explains it is currently unknown. In order to elucidate mechanisms responsible for the 'biochar effect', we comprehensively monitored tomato plant development and resistance to the foliar fungal pathogen Botrytis cinerea, in biochar-amended and nonamended soils using native biochar and washed biochar, striped of labile chemical constituents. We concomitantly assessed bacterial community succession in the rhizosphere by high-throughput 16S rRNA gene amplicon sequencing and carbon-source utilization profiling. Biochar had little impact on plant physiological parameters. However, both native and washed biochar treatments were characterized by higher rhizosphere bacterial diversity and enhanced carbohydrate and phenolic compound utilization rates coupled to stimulation of bacteria known to degrade phenolic compounds. This study indicates that the 'biochar effect' is at least partially dictated by increased diversity and changes in metabolic potential in the rhizosphere microbiome, which is primarily triggered by the recalcitrant carbon backbone of the biochar and tightly bound compounds. It corresponds to the growing consensus that soil amendments which enhance microbial diversity have important benefits to ecosystem functioning.


Subject(s)
Biodiversity , Botrytis/physiology , Charcoal/pharmacology , Plant Development/drug effects , Rhizosphere , Solanum lycopersicum/microbiology , Botrytis/drug effects , Carbon/pharmacology , Disease Susceptibility , Solanum lycopersicum/growth & development , Plant Diseases/microbiology , Plant Roots/drug effects , Plant Roots/microbiology , Soil/chemistry , Time Factors
14.
Environ Sci Process Impacts ; 16(8): 2007-17, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25053141

ABSTRACT

A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanisation often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data is thus an important tool for supplementing monitoring observations. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range of values (up to a few orders of magnitude) in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. A local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. The inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the coastal aquifer along the Israeli shoreline. The implications for aquifer management are discussed.


Subject(s)
Groundwater/analysis , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Water Quality , Environmental Monitoring , Humans , Israel
15.
J Colloid Interface Sci ; 396: 270-7, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23411356

ABSTRACT

Understanding the role of geometry, inertia, and dynamic contact angle on wetting and dewetting of capillary tubes has theoretical and practical aspects alike. The specific and synergistic effects of these factors were studied theoretically using a mathematical model that includes inertial and dynamic contact angle terms. After validating the model for capillaries of uniform cross section, the model was extended to capillaries with sinusoidal modulations of the radius, since in practice, capillaries rarely have uniform cross-sections. The height of the meniscus during wetting and dewetting was significantly affected by the relations between the local slope of the capillary surface and the Young contact angle. Non-dimensional variables were defined using viscous effects and gravity as the scaling parameters. Simulations using the dimensionless model showed that the inertial and dynamic contact angle terms can be neglected for narrow capillaries of uniform cross-section but not for uniform, wide cross-section capillaries. Moreover, nonuniformity in cross-sectional area induced hysteresis, deceleration, blocking, and metastable equilibrium locations. An increase in contact angle further amplified the effect of geometry on wetting and dewetting processes. These results enable characterization and modeling of fluid retention and flow in porous structures that inherently consist of capillaries of varying cross section.

16.
Appl Environ Microbiol ; 77(14): 4924-30, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21622786

ABSTRACT

Adding biochar to soil has environmental and agricultural potential due to its long-term carbon sequestration capacity and its ability to improve crop productivity. Recent studies have demonstrated that soil-applied biochar promotes the systemic resistance of plants to several prominent foliar pathogens. One potential mechanism for this phenomenon is root-associated microbial elicitors whose presence is somehow augmented in the biochar-amended soils. The objective of this study was to assess the effect of biochar amendment on the root-associated bacterial community composition of mature sweet pepper (Capsicum annuum L.) plants. Molecular fingerprinting (denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism) of 16S rRNA gene fragments showed a clear differentiation between the root-associated bacterial community structures of biochar-amended and control plants. The pyrosequencing of 16S rRNA amplicons from the rhizoplane of both treatments generated a total of 20,142 sequences, 92 to 95% of which were affiliated with the Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes phyla. The relative abundance of members of the Bacteroidetes phylum increased from 12 to 30% as a result of biochar amendment, while that of the Proteobacteria decreased from 71 to 47%. The Bacteroidetes-affiliated Flavobacterium was the strongest biochar-induced genus. The relative abundance of this group increased from 4.2% of total root-associated operational taxonomic units (OTUs) in control samples to 19.6% in biochar-amended samples. Additional biochar-induced genera included chitin and cellulose degraders (Chitinophaga and Cellvibrio, respectively) and aromatic compound degraders (Hydrogenophaga and Dechloromonas). We hypothesize that these biochar-augmented genera may be at least partially responsible for the beneficial effect of biochar amendment on plant growth and viability.


Subject(s)
Biofilms/drug effects , Capsicum/microbiology , Charcoal/pharmacology , Plant Roots/microbiology , Soil Microbiology , Base Sequence , Nucleotide Mapping , Plant Diseases/microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA , Soil/chemistry
17.
Ground Water ; 49(2): 275-9, 2011.
Article in English | MEDLINE | ID: mdl-20533954

ABSTRACT

Electrical conductivity (EC) logs were obtained by both open-borehole logging and passive multilevel sampling (MLS) in an observation borehole penetrating the Coastal Aquifer in Tel Aviv, Israel. Homogeneous vertical velocities for a 70-m thick subaquifer were approximated from each profile using a steady-state advection-diffusion model. The open-borehole log led to an overestimation of the steady-state upward advective flux of deep brines (vertical velocity of 0.95 cm/yr as compared to 0.07 cm/yr for the MLS profile). The combination of depth-dependent data and the suggested simple modeling approach comprises a method for assessing the vertical location of salinity sources and the nature of salt transport from them (i.e., advective vs. diffusive). However, in this case, the easily obtained open-borehole logs should not be used for collecting depth-dependent data.


Subject(s)
Electric Conductivity , Water Movements , Water Supply/analysis
18.
Phytopathology ; 100(9): 913-21, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20701489

ABSTRACT

Biochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper. Levels of 1 to 5% biochar in a soil and a coconut fiber-tuff potting medium were found to be significantly effective at suppressing both diseases in leaves of different ages. In long-term tests (105 days), pepper powdery mildew was significantly less severe in the biochar-treated plants than in the plants from the unamended controls although, during the final 25 days, the rate of disease development in the treatments and controls was similar. Possible biochar-related elicitors of systemic induced resistance are discussed.


Subject(s)
Capsicum/microbiology , Carbon/chemistry , Charcoal , Plant Diseases/prevention & control , Solanum lycopersicum/microbiology , Charcoal/chemistry , Charcoal/pharmacology , Fungi , Pest Control, Biological/methods , Plant Leaves/microbiology , Soil , Soil Microbiology , Time Factors
19.
Water Res ; 44(7): 2107-12, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20044117

ABSTRACT

Concentrations of chlorinated volatile organic compounds (Cl-VOCs) at the saturated-unsaturated interface region (SUIR; depth of approximately 18m) of a sandy phreatic aquifer were measured in two monitoring wells located 25m apart. The concentrations of the Cl-VOCs obtained above and below the water table along a 413-day period are interpreted to depict variable, simultaneous and independent movement of trichlorothene, tetrachloroethene, 1,1-dichloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane, chloroform and 1,1-dichloroethane vapors in opposite directions across the SUIR.


Subject(s)
Fresh Water/analysis , Geologic Sediments/chemistry , Hydrocarbons, Chlorinated/analysis , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , Chloroform/analysis , Dichloroethylenes/analysis , Environmental Monitoring/methods , Ethyl Chloride/analogs & derivatives , Ethyl Chloride/analysis , Fresh Water/chemistry , Israel , Tetrachloroethylene/analysis , Trichloroethanes/analysis , Volatilization , Water Movements
20.
Faraday Discuss ; 130: 453-68; discussion 491-517, 519-24, 2005.
Article in English | MEDLINE | ID: mdl-16161798

ABSTRACT

This study presents, for the first time, field evidence of complete, irreversible processing of solid calcium carbonate (calcite)-containing particles and quantitative formation of liquid calcium nitrate particles apparently as a result of heterogeneous reaction of calcium carbonate-containing mineral dust particles with gaseous nitric acid. Formation of nitrates from individual calcite and sea salt particles was followed as a function of time in aerosol samples collected at Shoresh, Israel. Morphology and compositional changes of individual particles were observed using conventional scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDX) and computer controlled SEM/EDX. Environmental scanning electron microscopy (ESEM) was utilized to determine and demonstrate the hygroscopic behavior of calcium nitrate particles found in some of the samples. Calcium nitrate particles are exceptionally hygroscopic and deliquesce even at very low relative humidity (RH) of 9-11% which is lower than typical atmospheric environments. Transformation of non-hygroscopic dry mineral dust particles into hygroscopic wet aerosol may have substantial impacts on light scattering properties, the ability to modify clouds and heterogeneous chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...