Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Brain Stimul ; 17(3): 636-647, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734066

ABSTRACT

BACKGROUND: Transcranial ultrasound stimulation (TUS) is a non-invasive brain stimulation technique; when skull aberrations are compensated for, this technique allows, with millimetric accuracy, circumvention of the invasive surgical procedure associated with deep brain stimulation (DBS) and the limited spatial specificity of transcranial magnetic stimulation. OBJECTIVE: /hypothesis: We hypothesize that MR-guided low-power TUS can induce a sustained decrease of tremor power in patients suffering from medically refractive essential tremor. METHODS: The dominant hand only was targeted, and two anatomical sites were sonicated in this exploratory study: the ventral intermediate nucleus of the thalamus (VIM) and the dentato-rubro-thalamic tract (DRT). Patients (N = 9) were equipped with MR-compatible accelerometers attached to their hands to monitor their tremor in real-time during TUS. RESULTS: VIM neurostimulations followed by a low-duty cycle (5 %) DRT stimulation induced a substantial decrease in the tremor power in four patients, with a minimum of 89.9 % reduction when compared with the baseline power a few minutes after the DRT stimulation. The only patient stimulated in the VIM only and with a low duty cycle (5 %) also experienced a sustained reduction of the tremor (up to 93.4 %). Four patients (N = 4) did not respond. The temperature at target was 37.2 ± 1.4 °C compared to 36.8 ± 1.4 °C for a 3 cm away control point. CONCLUSIONS: MR-guided low power TUS can induce a substantial and sustained decrease of tremor power. Follow-up studies need to be conducted to reproduce the effect and better to understand the variability of the response amongst patients. MR thermometry during neurostimulations showed no significant thermal rise, supporting a mechanical effect.

3.
Brain Commun ; 6(2): fcae105, 2024.
Article in English | MEDLINE | ID: mdl-38601915

ABSTRACT

Non-motor aspects in dystonia are now well recognized. The sense of agency, which refers to the experience of controlling one's own actions, has been scarcely studied in dystonia, even though its disturbances can contribute to movement disorders. Among various brain structures, the cerebral cortex, the cerebellum, and the basal ganglia are involved in shaping the sense of agency. In myoclonus dystonia, resulting from a dysfunction of the motor network, an altered sense of agency may contribute to the clinical phenotype of the condition. In this study, we compared the explicit and implicit sense of agency in patients with myoclonus dystonia caused by a pathogenic variant of SGCE (DYT-SGCE) and control participants. We utilized behavioural tasks to assess the sense of agency and performed neuroimaging analyses, including structural, resting-state functional connectivity, and dynamic causal modelling, to explore the relevant brain regions involved in the sense of agency. Additionally, we examined the relationship between behavioural performance, symptom severity, and neuroimaging findings. We compared 19 patients with DYT-SGCE and 24 healthy volunteers. Our findings revealed that patients with myoclonus-dystonia exhibited a specific impairment in explicit sense of agency, particularly when implicit motor learning was involved. However, their implicit sense of agency remained intact. These patients also displayed grey-matter abnormalities in the motor cerebellum, as well as increased functional connectivity between the cerebellum and pre-supplementary motor area. Dynamic causal modelling analysis further identified reduced inhibitory effects of the cerebellum on the pre-supplementary motor area, decreased excitatory effects of the pre-supplementary motor area on the cerebellum, and increased self-inhibition within the pre-supplementary motor area. Importantly, both cerebellar grey-matter alterations and functional connectivity abnormalities between the cerebellum and pre-supplementary motor area were found to correlate with explicit sense of agency impairment. Increased self-inhibition within the pre-supplementary motor area was associated with less severe myoclonus symptoms. These findings highlight the disruption of higher-level cognitive processes in patients with myoclonus-dystonia, further expanding the spectrum of neurological and psychiatric dysfunction already identified in this disorder.

4.
Mov Disord ; 39(5): 825-835, 2024 May.
Article in English | MEDLINE | ID: mdl-38486423

ABSTRACT

BACKGROUND: International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. OBJECTIVES: To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine-learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. MATERIALS: Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2-year follow-up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 ("Clin1"); (2) MRI visual reading blinded to the clinical diagnosis ("MRI"); (3) both MRI visual reading and clinical criteria at V1 ("MRI and Clin1"), and (4) a machine-learning algorithm ("Algorithm"). The gold standard diagnosis was established by expert consensus after a 2-year follow-up. RESULTS: We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit ("Clin1": balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% ("MRI": 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit ("MRI and Clin1": 85.4%; P < 0.0001). The algorithm achieved a diagnostic gain of 9.9% ("Algorithm": 76.1%; P = 0.08). CONCLUSION: Our study shows the use of MRI analysis, whether by visual reading or machine-learning methods, for early differentiation of parkinsonism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Early Diagnosis , Magnetic Resonance Imaging , Multiple System Atrophy , Parkinson Disease , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Humans , Female , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Male , Aged , Middle Aged , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/diagnosis , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/diagnosis , Parkinson Disease/diagnostic imaging , Parkinson Disease/diagnosis , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/diagnosis , Machine Learning , Uncertainty , Diagnosis, Differential , Sensitivity and Specificity
5.
Curr Opin Crit Care ; 30(2): 151-156, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38441073

ABSTRACT

PURPOSE OF REVIEW: The rising prevalence of neurodegenerative and mental disorders, combined with the challenges posed by their frailty, has presented intensivists with complex issues in the intensive care unit (ICU). This review article explores specific aspects of care for patients with catatonia, Parkinson's disease (PD), and dementia within the context of the ICU, shedding light on recent developments in these fields. RECENT FINDINGS: Catatonia, a neuropsychiatric syndrome with potentially life-threatening forms, remains underdiagnosed, and its etiologies are diverse. PD patients in the ICU present unique challenges related to admission criteria, dopaminergic treatment, and respiratory care. Dementia increases the risk of delirium. Delirium is associated with long-term cognitive impairment and dementia. SUMMARY: While evidence is lacking, further research is needed to guide treatment for ICU patients with these comorbidities.


Subject(s)
Catatonia , Delirium , Dementia , Parkinson Disease , Humans , Catatonia/diagnosis , Catatonia/therapy , Catatonia/complications , Parkinson Disease/complications , Parkinson Disease/therapy , Dementia/therapy , Dementia/complications , Delirium/diagnosis , Delirium/etiology , Delirium/therapy , Intensive Care Units
7.
J Neurol ; 271(5): 2412-2422, 2024 May.
Article in English | MEDLINE | ID: mdl-38214756

ABSTRACT

BACKGROUND: The long-term prognosis of impulsive compulsive disorders (ICD) remains poorly studied in Parkinson's disease (PD). OBJECTIVE: Evaluating the natural history of ICD and its impact on PD symptoms including cognition and treatment adjustments. MATERIALS AND METHODS: We assessed PD patients at baseline (BL) with (BL-ICD+) or without (BL-ICD-) ICD despite dopamine agonist (DA) exposure of > 300 mg levodopa-equivalent daily dose for > 12 months at baseline and after more than two years of follow-up. ICD were assessed using the Ardouin's Scale of Behaviors in PD (ASBPD), cognition using the Mattis scale, and PD symptoms using the UPDRS score. Treatment adjustments, DA withdrawal-associated symptoms, and ICDs social consequences were recorded. RESULTS: 149 patients were included (78 cases and 71 controls), mean duration of follow-up was 4.4 ± 1 years. At baseline, psychiatric disorders were more common among BL-ICD + (42.3 vs 12.3% among BL-ICD-, p < 0.01). At follow-up, 53.8% of BL-ICD + were not ICD-free while 21.1% of BL-ICD- had developed ICD. BL-ICD + more frequently experienced akinesia (21.8 vs 8.5%, p = 0.043) and rigidity worsening (11.5 vs 1.4%, p = 0.019) following therapeutic modifications. Decision to decrease > 50% DA doses (12.8 vs 1.4%, p = 0.019) or to withdraw DA (19.2 vs 5.6%, p = 0.025) was more frequently considered among BL-ICD+ . At follow-up, the prevalence of cognitive decline was lower among BL-ICD + (19.2 vs 37.1%, p = 0.025). CONCLUSION: ICDs were associated with increased psychiatric burden at baseline and better cognitive prognosis. Most patients were still showing ICDs at the follow-up visit, suggesting ICD to be considered as a chronic, neuropsychiatric disorder.


Subject(s)
Disruptive, Impulse Control, and Conduct Disorders , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/drug therapy , Male , Disruptive, Impulse Control, and Conduct Disorders/etiology , Female , Middle Aged , Aged , Prognosis , Prospective Studies , Dopamine Agonists/administration & dosage , Dopamine Agonists/adverse effects , Follow-Up Studies , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/adverse effects
8.
Brain ; 147(2): 472-485, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37787488

ABSTRACT

Postoperative apathy is a frequent symptom in Parkinson's disease patients who have undergone bilateral deep brain stimulation of the subthalamic nucleus. Two main hypotheses for postoperative apathy have been suggested: (i) dopaminergic withdrawal syndrome relative to postoperative dopaminergic drug tapering; and (ii) direct effect of chronic stimulation of the subthalamic nucleus. The primary objective of our study was to describe preoperative and 1-year postoperative apathy in Parkinson's disease patients who underwent chronic bilateral deep brain stimulation of the subthalamic nucleus. We also aimed to identify factors associated with 1-year postoperative apathy considering: (i) preoperative clinical phenotype; (ii) dopaminergic drug management; and (iii) volume of tissue activated within the subthalamic nucleus and the surrounding structures. We investigated a prospective clinical cohort of 367 patients before and 1 year after chronic bilateral deep brain stimulation of the subthalamic nucleus. We assessed apathy using the Lille Apathy Rating Scale and carried out a systematic evaluation of motor, cognitive and behavioural signs. We modelled the volume of tissue activated in 161 patients using the Lead-DBS toolbox and analysed overlaps within motor, cognitive and limbic parts of the subthalamic nucleus. Of the 367 patients, 94 (25.6%) exhibited 1-year postoperative apathy: 67 (18.2%) with 'de novo apathy' and 27 (7.4%) with 'sustained apathy'. We observed disappearance of preoperative apathy in 22 (6.0%) patients, who were classified as having 'reversed apathy'. Lastly, 251 (68.4%) patients had neither preoperative nor postoperative apathy and were classified as having 'no apathy'. We identified preoperative apathy score [odds ratio (OR) 1.16; 95% confidence interval (CI) 1.10, 1.22; P < 0.001], preoperative episodic memory free recall score (OR 0.93; 95% CI 0.88, 0.97; P = 0.003) and 1-year postoperative motor responsiveness (OR 0.98; 95% CI 0.96, 0.99; P = 0.009) as the main factors associated with postoperative apathy. We showed that neither dopaminergic dose reduction nor subthalamic stimulation were associated with postoperative apathy. Patients with 'sustained apathy' had poorer preoperative fronto-striatal cognitive status and a higher preoperative action initiation apathy subscore. In these patients, apathy score and cognitive status worsened postoperatively despite significantly lower reduction in dopamine agonists (P = 0.023), suggesting cognitive dopa-resistant apathy. Patients with 'reversed apathy' benefited from the psychostimulant effect of chronic stimulation of the limbic part of the left subthalamic nucleus (P = 0.043), suggesting motivational apathy. Our results highlight the need for careful preoperative assessment of motivational and cognitive components of apathy as well as executive functions in order to better prevent or manage postoperative apathy.


Subject(s)
Apathy , Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/complications , Subthalamic Nucleus/physiology , Apathy/physiology , Prospective Studies , Deep Brain Stimulation/methods , Cognition , Treatment Outcome
9.
NPJ Parkinsons Dis ; 9(1): 153, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919332

ABSTRACT

Parkinson's disease (PD) is affecting about 1.2 million patients in Europe with a prevalence that is expected to have an exponential increment, in the next decades. This epidemiological evolution will be challenged by the low number of neurologists able to deliver expert care for PD. As PD is better recognized, there is an increasing demand from patients for rigorous control of their symptoms and for therapeutic education. In addition, the highly variable nature of symtoms between patients and the fluctuations within the same patient requires innovative tools to help doctors and patients monitor the disease in their usual living environment and adapt treatment in a more relevant way. Nowadays, there are various body-worn sensors (BWS) proposed to monitor parkinsonian clinical features, such as motor fluctuations, dyskinesia, tremor, bradykinesia, freezing of gait (FoG) or gait disturbances. BWS have been used as add-on tool for patients' management or research purpose. Here, we propose a practical anthology, summarizing the characteristics of the most used BWS for PD patients in Europe, focusing on their role as tools to improve treatment management. Consideration regarding the use of technology to monitor non-motor features is also included. BWS obviously offer new opportunities for improving management strategy in PD but their precise scope of use in daily routine care should be clarified.

10.
Front Psychiatry ; 14: 1146492, 2023.
Article in English | MEDLINE | ID: mdl-37304434

ABSTRACT

Crack-cocaine dependence is a severe condition with a high mortality rate. This single case study report details the first deep brain stimulation (DBS) trial targeting the sub-thalamic nucleus (STN) for crack-cocaine dependence. The investigation aimed to assess the effects of STN-DBS on cocaine craving and cocaine use, as well as STN-DBS safety and tolerance in this indication. In this pilot study, we performed double blind cross-over trials, with "ON-DBS" vs. "SHAM-DBS" for 1-month periods. STN-DBS failed to reduce cocaine craving and use. An episode of DBS-induced hypomania occurred after several weeks of cocaine intake at stimulation parameters previously well tolerated. Future research on cocaine dependence should be conducted after a prolonged abstinence period and/or explore novel types of stimulation patterns.

11.
NPJ Parkinsons Dis ; 9(1): 45, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973302

ABSTRACT

Body-worn sensors (BWS) could provide valuable information in the management of Parkinson's disease and support therapeutic decisions based on objective monitoring. To study this pivotal step and better understand how relevant information is extracted from BWS results and translated into treatment adaptation, eight neurologists examined eight virtual cases composed of basic patient profiles and their BWS monitoring results. Sixty-four interpretations of monitoring results and the subsequent therapeutic decisions were collected. Relationship between interrater agreements in the BWS reading and the severity of symptoms were analyzed via correlation studies. Logistic regression was used to identify associations between the BWS parameters and suggested treatment modifications. Interrater agreements were high and significantly associated with the BWS scores. Summarized BWS scores reflecting bradykinesia, dyskinesia, and tremor predicted the direction of treatment modifications. Our results suggest that monitoring information is robustly linked to treatment adaptation and pave the way to loop systems able to automatically propose treatment modifications from BWS recordings information.

12.
Mov Disord ; 38(3): 479-484, 2023 03.
Article in English | MEDLINE | ID: mdl-36592065

ABSTRACT

BACKGROUND: The locus coeruleus/subcoeruleus complex (LC/LsC) is a structure comprising melanized noradrenergic neurons. OBJECTIVE: To study the LC/LsC damage across Parkinson's disease (PD) and atypical parkinsonism in a large group of subjects. METHODS: We studied 98 healthy control subjects, 47 patients with isolated rapid eye movement sleep behavior disorder (RBD), 75 patients with PD plus RBD, 142 patients with PD without RBD, 19 patients with progressive supranuclear palsy (PSP), and 19 patients with multiple system atrophy (MSA). Twelve patients with MSA had proven RBD. LC/LsC signal intensity was derived from neuromelanin magnetic resonance imaging using automated software. RESULTS: The signal intensity was reduced in all parkinsonian syndromes compared with healthy control subjects, except in PD without RBD. The signal intensity decreased as age increased. Moreover, the signal intensity was lower in MSA than in isolated RBD and PD without RBD groups. In PD, the signal intensity correlated negatively with the percentage of REM sleep without atonia. There were no differences in signal intensity between PD plus RBD, PSP, and MSA. CONCLUSIONS: Neuromelanin signal intensity was reduced in all parkinsonian disorders, except in PD without RBD. The presence of RBD in parkinsonian disorders appears to be associated with lower neuromelanin signal intensity. Furthermore, lower LC/LsC signal changes in PSP could be partly caused by the effect of age. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Humans , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Parkinsonian Disorders/complications , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Supranuclear Palsy, Progressive/pathology , Multiple System Atrophy/pathology , Magnetic Resonance Imaging/methods
13.
Parkinsonism Relat Disord ; 108: 105287, 2023 03.
Article in English | MEDLINE | ID: mdl-36706616

ABSTRACT

INTRODUCTION: Quantitative biomarkers for clinical differentiation of parkinsonian syndromes are still lacking. Our aim was to evaluate the value of combining clinically feasible manual measurements of R2* relaxation rates and mean diffusivity (MD) in subcortical regions and brainstem morphometric measurements to improve the discrimination of parkinsonian syndromes. METHODS: Twenty-two healthy controls (HC), 25 patients with Parkinson's disease (PD), 19 with progressive supranuclear palsy (PSP) and 27 with multiple system atrophy (MSA, 21 with the parkinsonian variant -MSAp, 6 with the cerebellar variant -MSAc) were recruited. R2*, MD measurements and morphometric biomarkers including the midbrain to pons area ratio and the Magnetic Resonance Parkinsonism Index (MRPI) were compared between groups and their diagnostic performances were assessed. RESULTS: Morphometric biomarkers discriminated better patients with PSP (ratio: AUC 0.89, MRPI: AUC 0.89) and MSAc (ratio: AUC 0.82, MRPI: AUC 0.75) from other groups. R2* and MD measurements in the posterior putamen performed better in separating patients with MSAp from PD (R2*: AUC 0.89; MD: AUC 0.89). For the three-class classification "MSA vs PD vs PSP", the combination of MD and R2* measurements in the posterior putamen with morphometric biomarkers (AUC: 0.841) outperformed each marker separately. At the individual-level, there were seven discordances between imaging-based prediction and clinical diagnosis involving MSA. Using the new Movement Disorder Society criteria for the diagnosis of MSA, three of these seven patients were clinically reclassified as predicted by quantitative imaging. CONCLUSION: Combining R2* and MD measurements in the posterior putamen with morphometric biomarkers improves the discrimination of parkinsonism.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Humans , Parkinsonian Disorders/pathology , Supranuclear Palsy, Progressive/pathology , Diffusion Magnetic Resonance Imaging , Brain Stem/pathology , Multiple System Atrophy/pathology , Magnetic Resonance Imaging/methods , Diagnosis, Differential
14.
Parkinsonism Relat Disord ; 103: 29-33, 2022 10.
Article in English | MEDLINE | ID: mdl-36029608

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) has been proposed to treat disabling dystonic tremor (DT), but there is debate about the optimal target. DBS of the globus pallidus interna (GPi) may be insufficient to control tremor, and DBS of the ventral intermediate thalamic nucleus (VIM) may inadequately control dystonic features, raising the question of combining both targets. OBJECTIVES: To report the respective effects on DT symptoms of high-frequency stimulation of the VIM, the GPi and both targets simultaneously stimulated. METHODS: Three patients with DT treated by bilateral high frequency DBS of 2 targets (VIM and GPi) were assessed 12 months after surgery in 4 conditions (VIM and GPi-DBS; GPi-DBS only; VIM-DBS only; DBS switched Off for both targets) by 3 independent movement disorders specialists blinded to the condition. RESULTS: The Fahn-Tolosa-Marin-tremor-rating-scale (FTM-TRS) and Burke-Fahn-Marsden-dystonia-rating-scale (BFM-DRS) scores were more improved by combined DBS than VIM alone or GPi alone. Compared to Off/Off condition, mean total FTM-TRS score decrease was 34%, 42% and 63% respectively with VIM only, GPi only and combined VIM and GPi stimulation. Mean total BFM-DRS score decrease was 34%, 37% and 60% respectively with VIM only, GPi only and combined VIM and GPi stimulation, compared to Off/Off condition. Improvement concerned both motor, functional and activities of daily living sub-scores. No complications or adverse events were observed. CONCLUSION: Combined VIM- and GPi-DBS, by modulating the cerebello-thalamo-cortical network and the basal ganglia-thalamo-cortical network, both involved in DT pathophysiology, may be more efficient than single DBS targeting only one of them.


Subject(s)
Deep Brain Stimulation , Dystonia , Dystonic Disorders , Humans , Globus Pallidus/physiology , Tremor/etiology , Dystonia/etiology , Deep Brain Stimulation/adverse effects , Ventral Thalamic Nuclei , Activities of Daily Living , Treatment Outcome
15.
PLoS One ; 17(5): e0265438, 2022.
Article in English | MEDLINE | ID: mdl-35511812

ABSTRACT

Body-Worn Sensors (BWS) provide reliable objective and continuous assessment of Parkinson's disease (PD) motor symptoms, but their implementation in clinical routine has not yet become widespread. Users' perceptions of BWS have not been explored. This study intended to evaluate the usability, user experience (UX), patients' perceptions of BWS, and health professionals' (HP) opinions on BWS monitoring. A qualitative analysis was performed from semi-structured interviews conducted with 22 patients and 9 HP experts in PD. Patients completed two interviews before and after the BWS one-week experiment, and they answered two questionnaires assessing the usability and UX. Patients rated the three BWS usability with high scores (SUS median [range]: 87.5 [72.5-100]). The UX across all dimensions of their interaction with the BWS was positive. During interviews, all patients and HP expressed interest in BWS monitoring. Patients' hopes and expectations increased the more they learned about BWS. They manifested enthusiasm to wear BWS, which they imagined could improve their PD symptoms. HP highlighted needs for logistical support in the implementation of BWS in their practice. Both patients and HP suggested possible uses of BWS monitoring in clinical practice, for treatment adjustments for example, or for research purposes. Patients and HP shared ideas about the use of BWS monitoring, although patients may be more likely to integrate BWS into their disease follow-up compared to HP in their practice. This study highlights gaps that need to be fulfilled to facilitate BWS adoption and promote their potential.


Subject(s)
Parkinson Disease , Wearable Electronic Devices , Delivery of Health Care , Health Personnel , Humans , Parkinson Disease/diagnosis , Qualitative Research , Surveys and Questionnaires
16.
Mov Disord ; 37(6): 1245-1255, 2022 06.
Article in English | MEDLINE | ID: mdl-35347754

ABSTRACT

BACKGROUND: Neurodegeneration in the substantia nigra pars compacta (SNc) in parkinsonian syndromes may affect the nigral territories differently. OBJECTIVE: The objective of this study was to investigate the regional selectivity of neurodegenerative changes in the SNc in patients with Parkinson's disease (PD) and atypical parkinsonism using neuromelanin-sensitive magnetic resonance imaging (MRI). METHODS: A total of 22 healthy controls (HC), 38 patients with PD, 22 patients with progressive supranuclear palsy (PSP), 20 patients with multiple system atrophy (MSA, 13 with the parkinsonian variant, 7 with the cerebellar variant), 7 patients with dementia with Lewy body (DLB), and 4 patients with corticobasal syndrome were analyzed. volume and signal-to-noise ratio (SNR) values of the SNc were derived from neuromelanin-sensitive MRI in the whole SNc. Analysis of signal changes was performed in the sensorimotor, associative, and limbic territories of the SNc. RESULTS: SNc volume and corrected volume were significantly reduced in PD, PSP, and MSA versus HC. Patients with PSP had lower volume, corrected volume, SNR, and contrast-to-noise ratio than HC and patients with PD and MSA. Patients with PSP had greater SNR reduction in the associative region than HC and patients with PD and MSA. Patients with PD had reduced SNR in the sensorimotor territory, unlike patients with PSP. Patients with MSA did not differ from patients with PD. CONCLUSIONS: This study provides the first MRI comparison of the topography of neuromelanin changes in parkinsonism. The spatial pattern of changes differed between PSP and synucleinopathies. These nigral topographical differences are consistent with the topography of the extranigral involvement in parkinsonian syndromes. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Humans , Magnetic Resonance Imaging/methods , Melanins , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/pathology , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology
17.
Parkinsonism Relat Disord ; 96: 13-17, 2022 03.
Article in English | MEDLINE | ID: mdl-35121249

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) of the mesencephalic locomotor region, composed of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, has been proposed to treat dopa-resistant gait and balance disorders in Parkinson's disease (PD). Here, we report the long-term effects of PPN- or CuN-DBS on these axial disorders. METHODS: In 6 PD patients operated for mesencephalic locomotor region DBS and prospectively followed for more than 2 years, we assessed the effects of both PPN- and CuN-DBS (On-dopa) in a cross-over single-blind study by using clinical scales and recording gait parameters. Patients were also examined Off-DBS. RESULTS: More than 2 years after surgery, axial and Tinetti scores were significantly aggravated with both PPN- or CuN-DBS relative to before and one year after surgery. Gait recordings revealed an increased double-stance duration with both PPN- or CuN-DBS, higher swing phase duration with CuN-DBS and step width with PPN-DBS. With PPN- versus CuN-DBS, the step length, velocity and cadence were significantly higher; and the double-stance and turn durations significantly lower. Irrespective the target, we found no significant change in clinical scores Off-DBS compared to On-DBS. The duration of anticipatory postural adjustments as well as step length were lower with versus without PPN-DBS. We found no other significant changes in motor, cognitive or psychiatric scores, except an increased anxiety severity. CONCLUSION: In this long-term follow-up study with controlled assessments, PPN- or CuN-DBS did not improve dopa-resistant gait and balance disorders with a worsening of these axial motor signs with time, thus indicating no significant clinical effect.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Pedunculopontine Tegmental Nucleus , Dihydroxyphenylalanine , Follow-Up Studies , Gait , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Parkinson Disease/drug therapy , Parkinson Disease/therapy , Pedunculopontine Tegmental Nucleus/physiology , Single-Blind Method
18.
J Parkinsons Dis ; 12(2): 639-653, 2022.
Article in English | MEDLINE | ID: mdl-34744048

ABSTRACT

BACKGROUND: Dopa-resistant freezing of gait (FOG) and falls represent the dominant motor disabilities in advanced Parkinson's disease (PD). OBJECTIVE: We investigate the effects of deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR), comprised of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, for treating gait and balance disorders, in a randomized double-blind cross-over trial. METHODS: Six PD patients with dopa-resistant FOG and/or falls were operated for MLR-DBS. Patients received three DBS conditions, PPN, CuN, or Sham, in a randomized order for 2-months each, followed by an open-label phase. The primary outcome was the change in anteroposterior anticipatory-postural-adjustments (APAs) during gait initiation on a force platformResults:The anteroposterior APAs were not significantly different between the DBS conditions (median displacement [1st-3rd quartile] of 3.07 [3.12-4.62] cm with sham-DBS, 1.95 [2.29-3.85] cm with PPN-DBS and 2.78 [1.66-4.04] cm with CuN-DBS; p = 0.25). Step length and velocity were significantly higher with CuN-DBS vs. both sham-DBS and PPN-DBS. Conversely, step length and velocity were lower with PPN-DBS vs. sham-DBS, with greater double stance and gait initiation durations. One year after surgery, step length was significantly lower with PPN-DBS vs. inclusion. We did not find any significant change in clinical scales between DBS conditions or one year after surgery. CONCLUSION: Two months of PPN-DBS or CuN-DBS does not effectively improve clinically dopa-resistant gait and balance disorders in PD patients.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Pedunculopontine Tegmental Nucleus , Deep Brain Stimulation/methods , Dihydroxyphenylalanine , Gait , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Parkinson Disease/drug therapy , Parkinson Disease/therapy , Pedunculopontine Tegmental Nucleus/physiology
19.
Brain ; 145(6): 2121-2132, 2022 06 30.
Article in English | MEDLINE | ID: mdl-34927205

ABSTRACT

CANVAS caused by RFC1 biallelic expansions is a major cause of inherited sensory neuronopathy. Detection of RFC1 expansion is challenging and CANVAS can be associated with atypical features. We clinically and genetically characterized 50 patients, selected based on the presence of sensory neuronopathy confirmed by EMG. We screened RFC1 expansion by PCR, repeat-primed PCR, and Southern blotting of long-range PCR products, a newly developed method. Neuropathological characterization was performed on the brain and spinal cord of one patient. Most patients (88%) carried a biallelic (AAGGG)n expansion in RFC1. In addition to the core CANVAS phenotype (sensory neuronopathy, cerebellar syndrome and vestibular impairment), we observed chronic cough (97%), oculomotor signs (85%), motor neuron involvement (55%), dysautonomia (50%), and parkinsonism (10%). Motor neuron involvement was found for 24 of 38 patients (63.1%). First motor neuron signs, such as brisk reflexes, extensor plantar responses, and/or spasticity, were present in 29% of patients, second motor neuron signs, such as fasciculations, wasting, weakness, or a neurogenic pattern on EMG in 18%, and both in 16%. Mixed motor and sensory neuronopathy was observed in 19% of patients. Among six non-RFC1 patients, one carried a heterozygous AAGGG expansion and a pathogenic variant in GRM1. Neuropathological examination of one RFC1 patient with an enriched phenotype, including parkinsonism, dysautonomia, and cognitive decline, showed posterior column and lumbar posterior root atrophy. Degeneration of the vestibulospinal and spinocerebellar tracts was mild. We observed marked astrocytic gliosis and axonal swelling of the synapse between first and second motor neurons in the anterior horn at the lumbar level. The cerebellum showed mild depletion of Purkinje cells, with empty baskets, torpedoes, and astrogliosis characterized by a disorganization of the Bergmann's radial glia. We found neuronal loss in the vagal nucleus. The pars compacta of the substantia nigra was depleted, with widespread Lewy bodies in the locus coeruleus, substantia nigra, hippocampus, entorhinal cortex, and amygdala. We propose new guidelines for the screening of RFC1 expansion, considering different expansion motifs. Here, we developed a new method to more easily detect pathogenic RFC1 expansions. We report frequent motor neuron involvement and different neuronopathy subtypes. Parkinsonism was more prevalent in this cohort than in the general population, 10% versus the expected 1% (P < 0.001). We describe, for the first time, the spinal cord pathology in CANVAS, showing the alteration of posterior columns and roots, astrocytic gliosis and axonal swelling, suggesting motor neuron synaptic dysfunction.


Subject(s)
Cerebellar Ataxia , Primary Dysautonomias , Cerebellar Ataxia/genetics , Gliosis , Humans , Motor Neurons/pathology , Reflex, Abnormal/physiology
20.
Int J Lang Commun Disord ; 56(6): 1204-1217, 2021 11.
Article in English | MEDLINE | ID: mdl-34383363

ABSTRACT

BACKGROUND: Hyperkinetic dysarthria is often present in isolated dystonia (ID) and is still understudied. Four main clusters of deviant speech dimensions in dystonia hyperkinetic dysarthria were initially provided: articulatory inaccuracy, phonatory stenosis, prosodic excess and prosodic insufficiency. AIM: The aim of our exploratory study was to provide preliminary data on both perceptual and acoustic analyses in relation to three out of these four main clusters. METHODS & PROCEDURES: Eleven patients with ID and 11 healthy controls (HC) participated in this study. Clinical/perceptual assessments and acoustic analyses of speech recordings were performed, the latter allowing for the analysis of parameters referring to aerophonatory control, voice quality, prosodic features and speech intelligibility estimated by nine listeners. Between-group statistical comparisons were performed (Wilcoxon tests, p < 0.05). Single-case differences between each patient and the control group were also carried out (effect size index and t < 0.05). OUTCOMES & RESULTS: Between-group comparisons confirmed the presence of a 'phonatory stenosis'; in addition, deficit in aerophonatory control and hypophonia was also displayed. 'Prosodic insufficiency' was confirmed, but not at the individual level. 'Prosodic excess' manifested only in patients with marked and severe dysarthria. Correlations between altered maximum phonation time, loudness variation, speech and articulatory rates on the one hand, and several clinical speech assessments on the other hand, were also found. CONCLUSIONS & IMPLICATIONS: From these findings, altogether, perceptual characteristics of hyperkinetic dysarthria, as suggested by Darley et al., were quantified by the acoustic parameters we measured. As regards to our data obtained in a small participant sample, we would suggest that Darley et al.'s clusters of excess and insufficiency prosody should be questioned in future studies involving larger numbers of dystonic patients. Our study provides novel and preliminary results that demonstrate the relevance of using quantitative measures to further characterise speech/voice deficits in patients with ID.


Subject(s)
Dystonia , Acoustics , Dysarthria/diagnosis , Dysarthria/etiology , Humans , Speech Acoustics , Speech Intelligibility , Speech Production Measurement
SELECTION OF CITATIONS
SEARCH DETAIL
...