Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(12): 4202-4221, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516091

ABSTRACT

Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.

2.
Inorg Chem ; 62(44): 18056-18068, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37886882

ABSTRACT

A series of heteroleptic bis-alkynyl-diimine mononuclear Pt(II) complexes with alkynylphosphonium and di-tert-butyl-2,2'-bipyridine (dtbpy) ligands have been prepared and characterized by spectroscopic methods and single-crystal XRD. The Pt(II) complexes obtained in the present study demonstrate triplet emission in solution, which originates from 3MLCT/3LC states where the nature of the π-conjugated linker in the alkynylphosphonium ligand manages the contributions of each transition, and this conclusion is supported by DFT calculations. Additionally, the presence of the phosphonium group connected to alkynyl through the π-conjugated linker enhances nonlinear optical properties of the Pt(II) complexes increasing two-photon absorption cross section up to 400 GM. In the solid state, the Pt(II) complexes demonstrate emission that is attributed to 3MMLCT transitions due to the presence of Pt-Pt metallophilic interactions, and the reversible assembly and disassembly of these interactions by grinding and solvent treatment are responsible for the mechanochromic luminescence. It has been experimentally shown that stimuli-responsive emission of the Pt(II) complexes is the result of a "monomer/dimer" transformation; this conclusion is confirmed by DFT calculations for discrete complexes and different dimers with or without Pt-Pt interactions.

3.
Dalton Trans ; 52(43): 16005-16017, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37850309

ABSTRACT

Four series of new luminescent cyclometalated complexes [Pt(C^N)(IPy)Y] (HC^N = 2-phenylpyridine (Hppy), 2-(1-benzofuran-3-yl)pyridine (Hbfpy), methyl-2-phenylquinoline-4-carboxylate (Hmpqc), 2-(1-benzothiophen-3-yl)pyridine (Hbtpy), IPy = 4-iodopyridine, and Y = Cl, Br, I) have been investigated as X/Y 'building blocks' for the construction of a supramolecular network utilizing the I atom in IPy as a halogen bond (XB) donor (the X atom). The σ-hole of the X atom was found to provide non-covalent X⋯Y, X⋯Pt and X⋯π (π system of the metalated chelate ring) interactions for the complexes in the crystal state. NBO analysis confirms donation of the platinum electron density to iodine upon the X⋯Pt interaction. The nature of the X counterpart in XB depends on the nature of the Y atom and the cyclometalating ligand of the Pt(II) complex. DFT calculations show that the HOMO of [Pt(C^N)(IPy)Y] in the S0 state is delocalized over Pt, Y and a C-coordinating fragment of C^N, while the LUMO in most complexes is formed by the Py orbitals of IPy. However, the α-HOMO in the lowest triplet state of [Pt(C^N)(IPy)Y] contains no contribution of the IPy wavefunctions. All Pt(II) complexes exhibited triplet luminescence in solution and in the solid state (Φ up to 0.129), which is determined by the nature of the C^N ligand. The emission profile is independent of the nature of the ligand Y, while the quantum yield decreases from Cl to I. Accordingly, on the basis of DFT calculation, this emission is interpreted as a C^N intraligand charge transfer predominantly. The XB formation did not show an effect on the luminescence of the complexes in the solid phase, however grinding of crystals results in an increase of brightness.

4.
Chem Commun (Camb) ; 59(62): 9517-9520, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37455637

ABSTRACT

The covalent attachment of organogold(I) moieties to the Lindqvist-type polyoxovanadate results in a measurable charge re-distribution across the formed Au-{V6}-Au linkages. Scanning probe microscopy studies of these hybrid compounds on the Au(111) surface demonstrate the increase in the number of switching states with stepwise increase in molecular conductance, compared with unfunctionalised hexavanadates.

5.
Dalton Trans ; 52(26): 8986-8997, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37334469

ABSTRACT

Two methods of post-synthetic modification (Suzuki coupling and CuAAC click-reaction) were applied to Ir(III) complexes [Ir(C^N)2N^N]+ to provide the second highly selective donor site. One family of functionalized complexes was used to demonstrate the potential of post-synthetic modification for controlled construction of d-d and d-f binuclear complexes. The complexes obtained were characterized by CHN elemental analysis, NMR spectroscopy, ESI mass-spectrometry, FTIR spectroscopy and single crystal X-ray diffraction analysis. By means of XPS and NEXAFS spectroscopy the coordination of diimine donor site to the Ln(III) centre has been definitely confirmed. The photophysical properties of mono- and binuclear complexes were carefully investigated, and the evolution of luminescent characteristics during the formation of a system of connected metallocenters is also discussed. TDDFT calculations were used to describe the luminescence mechanism and to confirm the conclusions made on the basis of experimental data.

6.
Ophthalmol Ther ; 12(4): 2199-2208, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37289355

ABSTRACT

INTRODUCTION: This study aimed to describe the effects of no-dose full-fluence photodynamic therapy without verteporfin (no-dose PDT) and to compare no-dose PDT with half-dose verteporfin full-fluence photodynamic therapy (HDFF PDT) for managing chronic central serous chorioretinopathy (cCSC). METHODS: This retrospective study evaluated 11 patients with chronic recurrent CSC treated with no-dose PDT between January 2019 and March 2022. Most of these patients were also treated with HDFF PDT a minimum of 3 months before and were considered as the control group. We described the changes of best corrected visual acuity (BCVA), maximum subretinal fluid (mSRF), foveal subretinal fluid (fSRF), and choroidal thickness (CT) 8 ± 2 weeks after no-dose PDT, and we compared BVCA, mSRF, fSRF, and CT of no-dose PDT with those of the of same patients previously treated with HDFF PDT. RESULTS: Fifteen eyes of 11 patients (10 male, mean age 54 ± 12 years) received no-dose PDT; among these, 10 eyes of 8 patients (7 male, mean age 53 ± 12 years) also received HDFF PDT. Three eyes showed complete resolution of fSRF after no-dose PDT. No significant differences were disclosed between treatment with and without verteporfin comparing BCVA, mSRF, fSRF, and CT at baseline and 8 ± 2 weeks from the treatment (p > 0.05 in all analyses). CONCLUSION: BVCA and CT significantly improved after no-dose PDT. Short-term functional and anatomical treatment outcomes for cCSC were similar for HDFF PDT and no-dose PDT. We hypothesize that the potential benefits of no-dose PDT may arise from thermal elevation that triggers and enhances photochemical activities by endogenous fluorophores, activating a biochemical cascade response that rescues/replaces sick, dysfunctional retinal pigment epithelial (RPE) cells. Results of this study suggest the potential value of a prospective clinical trial to evaluate no-dose PDT for managing cCSC, especially when verteporfin is contraindicated or unavailable.

7.
Chempluschem ; 88(7): e202300155, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37235519

ABSTRACT

A series of terminal acetylenes bearing methylpyridinium acceptor group attached to the alkynyl unit with different π-conjugated aromatic linker have been synthetized. These alkynylpyridinium salts are efficient 'push-pull' chromophores demonstrating bright UV-vis fluorescence with quantum yields up to 70 %. The homoleptic bis-alkynyl Au(I) complexes based on these alkynylpyridinium ligands demonstrate complicated photophysical behavior including dual emission in solution. The variation of the linker allows one to tune the intrasystem charge transfer and thus to change the electronic and photophysical properties of the organogold 'D-π-A' system. This study demonstrates that absolute and relative intensities of the bands in emission spectra and their energies are responsive to solvent system and anion nature even in case of weakly coordinative anions. TDDFT calculations show that the transitions related to emission of the complex cations are strongly associated with the hybrid MLCT/ILCT charge transfer, thus demonstrating that the complex molecule acts as a unified 'D-π-A' system.

8.
Inorg Chem ; 62(13): 5123-5133, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36939095

ABSTRACT

A series of compounds P1-P4 bearing terminal alkynyl sites connected with a phosphonium group via different π-conjugated linkers have been synthesized. The compounds themselves are efficient push-pull emitters and exhibit bright fluorescence in blue and near-UV regions. P1-P4 were used as alkynyl ligands to obtain a series of homoleptic bis-alkynyl Au(I) complexes 1-4. The complexes demonstrate bright phosphorescence and dual emission with dominating phosphorescence (2-4). Terphenyl derivative complex 3 exhibits warm white emission in DMSO solution and pure white emission in PMMA films. Time-dependent density functional theory calculations have shown that the T1 excited state has a hybrid MLCT/ILCT nature with a dominant contribution of charge transfer across a ligand-centered "D-π-A" system. The variation of linker allows tuning the effect of intermolecular charge transfer and thus changing the electronic and photophysical properties of the organogold "D-π-A" system. The results presented unambiguously display the advances of the conception of organometallic "D-π-A" construction.

9.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235030

ABSTRACT

CuAAC (Cu catalyzed azide-alkyne cycloaddition) click-reaction is a simple and powerful method for the post-synthetic modification of organometallic complexes of transition metals. This approach allows the selective introduction of additional donor sites or functional groups to the periphery of the ligand environment. This is especially important if a metalloligand with free donor sites, which are of the same nature as the primary site for the coordination of the primary metal, has to be created. The concept of post-synthetic modification of organometallic complexes by click-reaction is relatively recent and the currently available experimental material does not yet allow us to identify trends and formulate recommendations to address specific problems. In the present study, we have applied the CuAAC reaction for the post-synthetic modification of diimine mononuclear complexes Re(I), Pt(II) and Ir(III) with C≡C bonds at the periphery of the ligand environment and demonstrated that click-chemistry is a powerful tool for the tunable chemical post-synthetic modification of coordination compounds.


Subject(s)
Azides , Click Chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Copper/chemistry , Cycloaddition Reaction , Ligands
10.
Inorg Chem ; 61(30): 11629-11638, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35786911

ABSTRACT

The manipulation of the photophysical properties of molecular emitters can be realized by composing the close environment of the metal center with the "heavier pnictogen atom" effect. Replacing a nitrogen atom with a heavier phosphorus atom in otherwise isostructural molecular systems results in a significant change of the photophysical parameters. Herein, we report on the synthesis of four pairs of novel phosphinine-based and isostructural diimine-based Cu(I) complexes, which feature peculiar photophysical properties, and show how these parameters depend on the "heavier pnictogen atom" effect. The obtained Cu(I) complexes show triplet luminescence with MLCT character, which was investigated by means of spectroscopic and computational methods. It has been found that the photophysical properties of the coordination compounds show a dependency on the rigidity of the ancillary phosphine ligand in an unexpected manner. Replacing the nitrogen atom with a heavier phosphorus atom in otherwise isostructural molecular systems results in a significant change in emission energy and especially in the lifetime of the excited state. The results obtained demonstrate an efficient approach to the design of emissive molecular materials, which allows the construction of luminescent complexes with controlled photophysical properties.

11.
Inorg Chem ; 61(28): 10925-10933, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35775806

ABSTRACT

We report herein a family of polynuclear complexes, [Au@Ag4(Py3P)4]X5 and [Au@Cu4(Py3P)4]X5 [X = NO3, ClO4, OTf, BF4, SbF6], containing unprecedented Au-centered Ag4 and Cu4 tetrahedral cores supported by tris(2-pyridyl)phosphine (Py3P) ligands. The [Au@Ag4]5+ clusters are synthesized via controlled substitution of the central Ag(I) ion in all-silver [Ag@Ag4]5+ precursors by the reaction with Au(tht)Cl, while the [Au@Cu4]5+ cluster is assembled through the treatment of a pre-organized [Au(Py3P)4]+ metallo-ligand with 4 equiv of a Cu(I) source. The structure of the Au@M4 clusters has been experimentally and theoretically investigated to reveal very weak intermolecular Au-M metallophilic interactions. At ambient temperature, the designed compounds emit a modest turquoise-to-yellow luminescence with microsecond lifetimes. Based on the temperature-dependent photophysical experiments and DFT/TD-DFT computations, the emission observed has been assigned to an MLCT or LLCT type depending on composition of the cluster core.

12.
Molecules ; 27(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408648

ABSTRACT

In this work we show, using the example of a series of [Cu(Xantphos)(N^N)]+ complexes (N^N being substituted 5-phenyl-bipyridine) with different peripheral N^N ligands, that substituents distant from the main action zone can have a significant effect on the physicochemical properties of the system. By using the C≡C bond on the periphery of the coordination environment, three hybrid molecular systems with -Si(CH3)3, -Au(PR3), and -C2HN3(CH2)C10H7 fragments were produced. The Cu(I) complexes thus obtained demonstrate complicated emission behaviour, which was investigated by spectroscopic, electrochemical, and computational methods in order to understand the mechanism of energy transfer. It was found that the -Si(CH3)3 fragment connected to the peripheral C≡C bond changes luminescence to long-lived intra-ligand phosphorescence, in contrast to MLCT phosphorescence or TADF. The obtained results can be used for the design of new materials based on Cu(I) complexes with controlled optoelectronic properties on the molecular level, as well as for the production of hybrid systems.


Subject(s)
Coordination Complexes , Coordination Complexes/chemistry , Copper/chemistry , Ligands , Luminescence , Spectrum Analysis
13.
Molecules ; 26(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34833958

ABSTRACT

This study focuses on the synthesis of hybrid luminescent polysiloxanes and silicone rubbers grafted by organometallic rhenium(I) complexes using Cu(I)-catalyzed azido-alkyne cycloaddition (CuAAC). The design of the rhenium(I) complexes includes using a diimine ligand to create an MLCT luminescent center and the introduction of a triple C≡C bond on the periphery of the ligand environment to provide click-reaction capability. Poly(3-azidopropylmethylsiloxane-co-dimethylsiloxane) (N3-PDMS) was synthesized for incorporation of azide function in polysiloxane chain. [Re(CO)3(MeCN)(5-(4-ethynylphenyl)-2,2'-bipyridine)]OTf (Re1) luminescent complex was used to prepare a luminescent copolymer with N3-PDMS (Re1-PDMS), while [Re(CO)3Cl(5,5'-diethynyl-2,2'-bipyridine)] (Re2) was used as a luminescent cross-linking agent of N3-PDMS to obtain luminescent silicone rubber (Re2-PDMS). The examination of photophysical properties of the hybrid polymer materials obtained show that emission profile of Re(I) moiety remains unchanged and metallocenter allows to control the creation of polysiloxane-based materials with specified properties.

14.
Inorg Chem ; 60(24): 18715-18725, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34823354

ABSTRACT

A series of organometallic complexes containing an alkynylphosphinegold(I) fragment and a phenylene-terpyridine moiety connected together by flexible linker have been prepared using the specially designed terpyridine ligands. The compounds were studied crystallographically to reveal that all of them contain a linearly coordinated Au(I) atom and a free terpyridine moiety. The different orientations of the molecules relative to each other in the solid state determine the multiple noncovalent interactions such as antiparallel ππ stacking, CH-π, and CH-Au, but no aurophilic interactions are realized. The organometallic Au(I) complexes obtained show fluorescence in the solution and dual singlet-triplet emission in the solid state. This means that their photophysical behavior is determined by both intermolecular lattice-defined interactions and Au(I) atom introduction. Density functional theory computational analysis supported the assignment of emission to intraligand electronic transitions only inside the phenylene-terpyridine part with no Au(I) involved. In addition, a study of the nature of the excited states for the "dimer" with an antiparallel orientation of the terpyridine fragment showed that this orientation leads to the generation of abstracted singlet and triplet states, lowering their energy in comparison with the monomer complex. Thus, the complexes obtained can be qualified as examples of Au(I)-containing organometallic aggregation-induced-emission luminogens.

15.
J Am Chem Soc ; 143(37): 15045-15055, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34491736

ABSTRACT

Heterodentate phosphines containing anionic organophosphorus groups remain virtually unexplored ligands in the coordination chemistry of coinage metals. A hybrid phosphine-phosphine oxide (o-Ph2PC6H4)2P(O)H (HP3O) readily forms the disilver complex [Ag2(P3O)2] (1) upon deprotonation of the (O)P-H fragment. Due to the electron-rich nature, the anionic phosphide oxide unit in 1 takes part in efficient intermolecular hydrogen bonding, which has an unusual and remarkably strong impact on the photoluminescence of 1, changing the emission from red (644 nm) to green-yellow (539 nm) in the solid. The basicity of the R2(O)P- group and its affinity for both inter- and intramolecular donor-acceptor interactions allow converting 1 into hydrohalogenated (2, 3) and boronated (4) derivatives, which reveal a gradual hypsochromic shift of luminescence, reaching the wavelength of 489 nm. Systematic variable-temperature analysis of the excited state properties suggests that thermally activated delayed fluorescence is involved in the emission process. The long-lived excited states for 1-4, the energy of which is largely regulated by means of the phosphide oxide unit, are potentially suitable for triplet energy transfer photocatalysis. With the highest T1 energy among 1-4, complex 4 demonstrates excellent photocatalytic activity in a [2+2] cycloaddition reaction, which has been realized for the first time for silver(I) compounds.

16.
Adv Sci (Weinh) ; 8(20): e2102788, 2021 10.
Article in English | MEDLINE | ID: mdl-34414696

ABSTRACT

The encapsulation and/or surface modification can stabilize and protect the phosphorescence bio-probes but impede their intravenous delivery across biological barriers. Here, a new class of biocompatible rhenium (ReI ) diimine carbonyl complexes is developed, which can efficaciously permeate normal vessel walls and then functionalize the extravascular collagen matrixes as in situ oxygen sensor. Without protective agents, ReI -diimine complex already exhibits excellent emission yield (34%, λem   = 583 nm) and large two-photon absorption cross-sections (σ2   = 300 GM @ 800 nm) in water (pH 7.4). After extravasation, remarkably, the collagen-bound probes further enhanced their excitation efficiency by increasing the deoxygenated lifetime from 4.0 to 7.5 µs, paving a way to visualize tumor hypoxia and tissue ischemia in vivo. The post-extravasation functionalization of extracellular matrixes demonstrates a new methodology for biomaterial-empowered phosphorescence sensing and imaging.


Subject(s)
Blood Vessels/diagnostic imaging , Collagen/metabolism , Luminescent Agents/pharmacology , Oxygen/metabolism , Blood Vessels/drug effects , Blood Vessels/metabolism , Blood Vessels/pathology , Collagen/genetics , Humans , Iridium/pharmacology , Microscopy, Confocal , Neoplasms/genetics , Neoplasms/pathology , Photons , Rhenium/chemistry , Tumor Hypoxia/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
17.
Inorg Chem ; 60(12): 8777-8789, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34097403

ABSTRACT

Cyclometalated complexes [M(Phbpy)(CN)] (HPhbpy = 6-phenyl-2,2'-bipyridine) of the group 10 metals (Ni, Pd, and Pt) bearing a carbanionic -C∧N∧N pincer ligand were synthesized and studied in a combined experimental and computational DFT approach. All three complexes were crystallographically characterized showing closely packed dimers with head-to-tail stacking and short metal-metal contacts in the solid state. The computational models for geometries, excited states, and electronic transitions addressed both monomeric (Ni-mono, Pd-mono, and Pt-mono) and dimeric (Ni-dim, Pd-dim, and Pt-dim) entities. Photophysical properties and excited state dynamics of all title complexes were investigated in solution and in the solid at 298 and 77 K. [Ni(Phbpy)(CN)] and [Pd(Phbpy)(CN)] are virtually nonemissive in solution at 298 K, whereas [Pt(Phbpy)(CN)] shows phosphorescence in CH2Cl2 (DCM) solution (λem = 562 nm) stemming from a mixed 3MLCT/ILCT (metal-to-ligand charge transfer/intraligand charge transfer) state. At 77 K in a glassy frozen DCM:MeOH matrix, [Pd(Phbpy)(CN)] shows a remarkable emission (λem = 571 nm) with a photoluminescence quantum yield reaching almost unity, whereas [Ni(Phbpy)(CN)] is again nonemissive. Calculations on the monomeric models M-mono show that low-lying metal-centered states (MC, i.e., d-d* configuration) with dissociative character quench the photoluminescence. In the solid state, the complexes [M(Phbpy)(CN)] show defined photoluminescence bands (λem = 561 nm for Pd and 701 nm for Pt). Calculations on the dimeric models M-dim shows that the axial M···M interactions alter the photophysical properties of Pd-dim and Pt-dim toward MMLCT (metal-metal-to-ligand charge transfer) excited states with Pd-dim showing temperature-dependent emission lifetimes, suggesting thermally activated delayed fluorescence, whereas Pt-dim displayed phosphorescence with excimeric character. The metal-metal interactions were analyzed in detail with the quantum theory of atoms in molecules approach.

18.
Dalton Trans ; 50(18): 6003-6033, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33913991

ABSTRACT

Copper subgroup metal ions in the +1 oxidation state are classical candidates for aggregation via non-covalent metal-metal interactions, which are supported by a number of bridging ligands. The bridging phosphines, soft donors with a relatively labile coordination to coinage metals, serve as convenient and essential components of the ligand environment that allow for efficient self-assembly of discrete polynuclear aggregates. Simultaneously, accessible and rich modification of the organic spacer of such P-donors has been used to generate many fascinating structures with attractive photoluminescent behavior. In this work we consider the development of di- and polynuclear complexes of M(i) (M = Cu, Ag, Au) and their photophysical properties, focusing on the effect of phosphine bridging ligands, their flexibility and denticity.

19.
Chemistry ; 27(5): 1787-1794, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-32970903

ABSTRACT

Luminescent cyclometalated complexes [M(C^N^N)CN] (M=Pt, Pd; HC^N^N=pyridinyl- (M=Pt 1, Pd 5), benzyltriazolyl- (M=Pt 2), indazolyl- (M=Pt 3, Pd 6), pyrazolyl-phenylpyridine (M=Pt 4)) decorated with cyanide ligand, have been explored as nucleophilic building blocks for the construction of halogen-bonded (XB) adducts using IC6 F5 as an XB donor. The negative electrostatic potential of the CN group afforded CN⋅⋅⋅I noncovalent interactions for platinum complexes 1-3; the energies of XB contacts are comparable to those of metallophilic bonding according to QTAIM analysis. Embedding the chromophore units into XB adducts 1-3⋅⋅⋅IC6 F5 has little effect on the charge distribution, but strongly affects Pt⋅⋅⋅Pt bonding and π-stacking, which lead to excited states of MMLCT (metal-metal-to-ligand charge transfer) origin. The energies of these states and the photoemissive properties of the crystalline materials are primarily determined by the degree of aggregation of the luminophores via metal-metal interactions. The adduct formation depends on the nature of the metal and the structure of the metalated ligand, the variation of which can yield dynamic XB-supported systems, exemplified by thermally regulated transition 3↔3⋅⋅⋅IC6 F5 .

20.
Inorg Chem ; 59(22): 16122-16126, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33103900

ABSTRACT

The fully oxidized Lindqvist-type hexavanadate compounds decorated by phosphine-derivatized Au(I) moieties oriented in a transoid fashion (n-Bu4N)2[V6O13{(OCH2)3CCH2(N3C2C6H5)AuP(C6H4OMe)3}2] (POMNAu) and (n-Bu4N)2[V6O13{(OCH2)3CCH2OCH2(C2N3H)AuP(C6H4OMe)3}2] (POMCAu) have been prepared by azide-alkyne cycloaddition reactions and characterized by various techniques, including NMR, IR, and UV/vis spectroscopy and electrospray ionization mass spectrometry. Electronic structure calculations unveil the potential of these model hybrid junctions for application in controlled charge-transport experiments on substrate surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...