Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 509, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783170

ABSTRACT

BACKGROUND: The increase in temperatures due to the current climate change dramatically affects crop cultivation, resulting in yield losses and altered fruit quality. Tomato is one of the most extensively grown and consumed horticultural products, and although it can withstand a wide range of climatic conditions, heat stress can affect plant growth and development specially on the reproductive stage, severely influencing the final yield. In the present work, the heat stress response mechanisms of one thermotolerant genotype (E42) were investigated by exploring its regulatory gene network. This was achieved through a promoter analysis based on the identification of the heat stress elements (HSEs) mapping in the promoters, combined with a gene co-expression network analysis aimed at identifying interactions among heat-related genes. RESULTS: Results highlighted 82 genes presenting HSEs in the promoter and belonging to one of the 52 gene networks obtained by the GCN analysis; 61 of these also interact with heat shock factors (Hsfs). Finally, a list of 13 candidate genes including two Hsfs, nine heat shock proteins (Hsps) and two GDSL esterase/lipase (GELPs) were retrieved by focusing on those E42 genes exhibiting HSEs in the promoters, interacting with Hsfs and showing variants, compared to Heinz reference genome, with HIGH and/or MODERATE impact on the translated protein. Among these, the Gene Ontology annotation analysis evidenced that only LeHsp100 (Solyc02g088610) belongs to a network specifically involved in the response to heat stress. CONCLUSIONS: As a whole, the combination of bioinformatic analyses carried out on genomic and trascriptomic data available for tomato, together with polymorphisms detected in HS-related genes of the thermotolerant E42 allowed to determine a subset of candidate genes involved in the HS response in tomato. This study provides a novel approach in the investigation of abiotic stress response mechanisms and further studies will be conducted to validate the role of the highlighted genes.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Genotype , Heat-Shock Response , Promoter Regions, Genetic , Solanum lycopersicum , Thermotolerance , Solanum lycopersicum/genetics , Heat-Shock Response/genetics , Thermotolerance/genetics , Plant Proteins/genetics , Heat-Shock Proteins/genetics , Gene Expression Profiling
2.
Genes (Basel) ; 14(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36980808

ABSTRACT

Climate change represents the main problem for agricultural crops, and the constitution of heat-tolerant genotypes is an important breeder's strategy to reduce yield losses. The aim of the present study was to investigate the whole genome of a heat-tolerant tomato genotype (E42), in order to identify candidate genes involved in its response to high temperature. E42 presented a high variability for chromosomes 1, 4, 7 and 12, and phylogenetic analysis highlighted its relationship with the wild S. pimpinellifolium species. Variants with high (18) and moderate (139) impact on protein function were retrieved from two lists of genes related to heat tolerance and reproduction. This analysis permitted us to prioritize a subset of 35 candidate gene mapping in polymorphic regions, some colocalizing in QTLs controlling flowering in tomato. Among these genes, we identified 23 HSPs, one HSF, six involved in flowering and five in pollen activity. Interestingly, one gene coded for a flowering locus T1 and mapping on chromosome 11 resides in a QTL region controlling flowering and also showed 100% identity with an S. pimpinellifolium allele. This study provides useful information on both the E42 genetic background and heat stress response, and further studies will be conducted to validate these genes.


Subject(s)
Solanum lycopersicum , Thermotolerance , Solanum lycopersicum/genetics , Thermotolerance/genetics , Phylogeny , Heat-Shock Response/genetics , Genomics
3.
Front Plant Sci ; 14: 1245661, 2023.
Article in English | MEDLINE | ID: mdl-38259925

ABSTRACT

Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.

4.
Plants (Basel) ; 10(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34685977

ABSTRACT

The constitution of heat tolerant F1 hybrids is a challenge to ensure high yield and good fruit quality in the global climate. In the present work, we evaluated 15 genotypes for yield-related traits highly affected by high temperatures (HT). This phenotypic analysis allowed to identify four parental genotypes showing promising yield performances under HT conditions. Two of these genotypes also exhibited good fruit quality traits. A molecular marker analysis was carried out for six resistance genes to pathogens mostly affecting tomatoes. This analysis evidenced the presence of a maximum of three resistant alleles in parental genotypes. Exploring single nucleotide polymorphisms (SNPs) revealed by two high-throughput genotyping platforms allowed identifying additional 12 genes potentially involved in resistance to biotic stress, to be further investigated. Following these considerations, 13 F1 hybrids were constituted combining the parental genotypes and then evaluated for multiple traits under HT conditions. By estimating a hybrid index based on yield performances, desirable quality and resistance gene, we identified seven hybrids showing the best performances. The promising results obtained in the present work should be confirmed by evaluating the best hybrids selected for additional years and environments before proposing them as novel commercial hybrids that could maintain high performances under HT conditions.

5.
Genes (Basel) ; 11(8)2020 07 24.
Article in English | MEDLINE | ID: mdl-32722275

ABSTRACT

The Solanum pennellii introgression lines (ILs) have been exploited to map quantitative trait loci (QTLs) and identify favorable alleles that could improve fruit quality traits in tomato varieties. Over the past few years, ILs exhibiting increased content of ascorbic acid in the fruit have been selected, among which the sub-line R182. The aims of this work were to identify the genes of the wild donor S. pennellii harbored by the sub-line and to detect genes controlling ascorbic acid accumulation by using genomics tools. A Genotyping-By-Sequencing (GBS) approach confirmed that no wild introgressions were present in the sub-line besides one region on chromosome 7. By using a dense single nucleotide polymorphism (SNP) map obtained by RNA sequencing (RNA-Seq), the wild region of the sub-line was finely identified; thus, defining 39 wild genes that replaced 33 genes of the ILs genetic background (cv. M82). The differentially expressed genes mapping in the region and the variants detected among the cultivated and the wild alleles evidenced the potential role of the novel genes present in the wild region. Interestingly, one upregulated gene, annotated as a major facilitator superfamily protein, showed a novel structure in R182, with respect to the parental lines. These genes will be further investigated using gene editing strategies.


Subject(s)
Ascorbic Acid/metabolism , Fruit/metabolism , Plant Proteins/metabolism , Quantitative Trait Loci , Solanum lycopersicum/genetics , Chromosomes, Plant/genetics , Fruit/genetics , Fruit/growth & development , Genomics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Phenotype , Plant Proteins/genetics
6.
Clin Cardiol ; 31(12): 602-6, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19097138

ABSTRACT

BACKGROUND: Obese patients have myocardial structural and functional alterations related to insulin resistance. HYPOTHESIS: The purpose of the study was to analyze the effects of rosiglitazone, an insulin sensitizer agent, on cardiac morphometry and functioning. METHODS: In 2 groups of sex- and age-matched, nondiabetic, obese patients (5 men and 7 women, age 19-51 y; group A: body mass index [BMI] 40.6 +/- 3.4 kg/m(2); group B: BMI 42.6 +/- 2.7 kg/m(2)), we evaluated the basal insulin sensitivity index (HOMA[IS]), body composition by bioelectrical impedance analysis and 24-h blood pressure monitoring. Furthermore, all patients underwent conventional 2-Dimensional and color Doppler echocardiography, and pulsed-wave tissue Doppler imaging (TDI). After the baseline evaluation, all patients were put on a hypocaloric diet (70% basal metabolic rate) plus placebo if they were in group A, or plus rosiglitazone (4 mg twice daily; Avandia [GlaxoSmithKline plc., Brentford, Middlesex, United Kingdom]) if they were in group B, for 6 mo. RESULTS: Significant decreases in body weight, total fat mass, BMI, and systolic blood pressure were registered in both groups. Rosiglitazone administration appeared more efficient in improving HOMA(IS) (mean difference: 0.30 +/- 0.19 versus 0.11 +/- 0.21, p < 0.05). Left ventricular (LV) diastolic diameter (49.4 +/- 7.7 versus 52.3 +/- 5.4 mm, p < 0.05) and E wave (0.89 +/- 0.18 versus 0.99 +/- 0.20 m/sec, p < 0.05) increased in the rosiglitazone group due to a rise in preload and water content without peripheral edema. The increase in systolic (Sa) wave velocity in both groups was probably a result of the general improvement in insulin metabolism and the decrease in blood pressure. CONCLUSIONS: We confirmed the positive effect of rosiglitazone on glucose metabolism in obese, nondiabetic patients, but changes in insulin sensitivity did not explain the cardiac effects produced by further mechanisms.


Subject(s)
Cardiovascular System/drug effects , Obesity/physiopathology , PPAR gamma/pharmacology , Thiazolidinediones/pharmacology , Ventricular Function, Left/drug effects , Adult , Blood Pressure/drug effects , Body Weight/drug effects , Diastole/physiology , Echocardiography, Doppler , Female , Humans , Insulin/metabolism , Insulin Resistance/physiology , Male , Rosiglitazone , Systole/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...