Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 927: 172216, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583614

ABSTRACT

Antibiotic resistance genes (ARGs) are a major threat to human and environmental health. This study investigated the occurrence and distribution of ARGs in Lake Cajititlán, a hypereutrophic subtropical lake in Mexico contaminated by anthropogenic sources (urban wastewater and runoff from crop and livestock production). ARGs (a total of 475 genes) were detected in 22 bacterial genera, with Pseudomonas (144 genes), Stenotrophomonas (88 genes), Mycobacterium (54 genes), and Rhodococcus (27 genes) displaying the highest frequencies of ARGs. Among these, Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed the highest number of ARGs. The results revealed a diverse array of ARGs, including resistance to macrolides (11.55 %), aminoglycosides (8.22 %), glycopeptides (6.22 %), tetracyclines (4 %), sulfonamides (4 %), carbapenems (1.11 %), phenicols (0.88 %), fluoroquinolones (0.44 %), and lincosamides (0.22 %). The most frequently observed ARGs were associated with multidrug resistance (63.33 %), with MexF (42 genes), MexW (36 genes), smeD (31 genes), mtrA (25 genes), and KHM-1 (22 genes) being the most common. Lake Cajititlán is a recreational area for swimming, fishing, and boating, while also supporting irrigation for agriculture and potentially acting as a drinking water source for some communities. This raises concerns about the potential for exposure to antibiotic-resistant bacteria through these activities. The presence of ARGs in Lake Cajititlán poses a significant threat to both human and environmental health. Developing strategies to mitigate the risks of antibiotic resistance, including improving wastewater treatment, and promoting strategic antibiotic use and disposal, is crucial. This study represents a significant advancement in the understanding of antibiotic resistance dynamics in a hypereutrophic subtropical lake in a developing country, providing valuable insights for the scientific community and policymakers.


Subject(s)
Drug Resistance, Microbial , Environmental Monitoring , Lakes , Lakes/microbiology , Drug Resistance, Microbial/genetics , Mexico , Anti-Bacterial Agents/pharmacology , Metagenomics , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Wastewater/microbiology , Bacteria/drug effects , Bacteria/genetics , Water Pollutants, Chemical/analysis
2.
Sci Rep ; 14(1): 5703, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459054

ABSTRACT

This study examined the interplay between bacterial and fungal communities in the human gut microbiota, impacting on nutritional status and body weight. Cohorts of 10 participants of healthy weight, 10 overweight, and 10 obese individuals, underwent comprehensive analysis, including dietary, anthropometric, and biochemical evaluations. Microbial composition was studied via gene sequencing of 16S and ITS rDNA regions, revealing bacterial (bacteriota) and fungal (mycobiota) profiles. Bacterial diversity exceeded fungal diversity. Statistically significant differences in bacterial communities were found within healthy-weight, overweight, and obese groups. The Bacillota/Bacteroidota ratio (previously known as the Firmicutes/Bacteroidetes ratio) correlated positively with body mass index. The predominant fungal phyla were Ascomycota and Basidiomycota, with the genera Nakaseomyces, Kazachstania, Kluyveromyces, and Hanseniaspora, inversely correlating with weight gain; while Saccharomyces, Debaryomyces, and Pichia correlated positively with body mass index. Overweight and obese individuals who harbored a higher abundance of Akkermansia muciniphila, demonstrated a favorable lipid and glucose profiles in contrast to those with lower abundance. The overweight group had elevated Candida, positively linked to simple carbohydrate consumption. The study underscores the role of microbial taxa in body mass index and metabolic health. An imbalanced gut bacteriota/mycobiota may contribute to obesity/metabolic disorders, highlighting the significance of investigating both communities.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Saccharomycetales , Humans , Gastrointestinal Microbiome/genetics , Overweight/microbiology , Nutritional Status , Bacteria/genetics , Obesity/microbiology , Bacteroidetes , Firmicutes
3.
J Environ Manage ; 354: 120258, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387343

ABSTRACT

Global sustainable development faces several challenges in addressing the needs of a growing population. Regarding food industries, the heightening pressure to meet these needs has resulted in increased waste generation. Thus, recognising these wastes as valuable resources is crucial to integrating sustainable models into current production systems. For instance, the current 24 billion tons of nutrient-rich livestock wastewater (LW) generated yearly could be recovered and valorised via biological uptake through microalgal biomass. Microalgae-based livestock wastewater treatment (MbLWT) has emerged as an effective technology for nutrient recovery, specifically targeting carbon, nitrogen, and phosphorus. However, the viability and efficacy of these systems rely on the characteristics of LW, including organic matter and ammonium concentration, content of suspended solids, and microbial load. Thus, this systematic literature review aims to provide guidance towards implementing an integral MbLWT system for nutrient control and recovery, discussing several pre-treatments used in literature to overcome the challenges regarding LW as a suitable media for microalgae cultivation.


Subject(s)
Microalgae , Water Purification , Animals , Livestock , Wastewater , Nutrients , Technology , Biomass , Nitrogen , Phosphorus
4.
J Environ Manage ; 352: 119959, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38194871

ABSTRACT

The increasing demand for water and worsening climate change place significant pressure on this vital resource, making its preservation a global priority. Water quality monitoring programs are essential for effectively managing this resource. Current programs rely on traditional monitoring approaches, leading to limitations such as low spatiotemporal resolution and high operational costs. Despite the adoption of novel monitoring approaches that enable better data resolution, the public's comprehension of water quality matters remains low, primarily due to communication process deficiencies. This study explores the advantages and challenges of using Internet of Things (IoT) and citizen science as alternative monitoring approaches, emphasizing the need for enhancing public communication of water quality data. Through a systematic review of studies implemented on-field, we identify and propose strategies to address five key challenges that IoT and citizen science monitoring approaches must overcome to mature into robust sources of water quality information. Additionally, we highlight three fundamental problems affecting the water quality communication process and outline strategies to convey this topic effectively to the public.


Subject(s)
Citizen Science , Internet of Things , Water Quality , Communication
5.
J Environ Manage ; 347: 118993, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37751665

ABSTRACT

Anaerobic digestion (AD) as a waste management strategy for the organic fraction of municipal waste (OFMSW) has received attention in developed countries for several decades, leading to the development of large-scale plants. In contrast, AD of OFMSW has only recently drawn attention in developing countries. This systematic review was carried out to investigate the implementation of AD to treat the OFMSW in developing countries, focusing on assessing pilot and full-scale AD plants reported in the last ten years. Studies that met the selection criteria were analyzed and data regarding operating parameters, feedstock characteristics, and biogas, digestate, and energy production were extracted. As outlined in this systematic review, AD plants located in developing countries are mostly one-stage mesophilic systems that treat OFMSW via mono-digestion, almost exclusively with the aim of producing electrical energy. Based on the analysis done throughout this systematic review, it was noted that there is a large difference in the maturity level of AD systems between developing and developed countries, mainly due to the economic capacity of developed countries to invest in sustainable waste management systems. However, the number of AD plants reported in scientific papers is significantly lower than the number of installed AD systems. Research articles regarding large-scale implementation of AD to treat OFMSW in developed countries were analyzed and compared with developing countries. This comparison identified practices used in plants in developed countries that could be utilized in the large-scale implementation and success of AD in developing countries. These practices include exploiting potential products with high market-values, forming partnerships with local industries to use industrial wastes as co-substrates, and exploring different biological and physical pretreatment technologies. Additionally, the analysis of capital and operational costs of AD plants showed that costs tend to be higher for developing countries due to their need to import of materials and equipment from developed countries. Technical, economical, and political challenges for the implementation of AD at a large-scale in developing countries are highlighted.


Subject(s)
Refuse Disposal , Solid Waste , Solid Waste/analysis , Anaerobiosis , Developing Countries , Bioreactors , Biofuels/analysis , Methane
6.
BMC Pediatr ; 23(1): 210, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138212

ABSTRACT

BACKGROUND: Childhood obesity is a serious public health concern that confers a greater risk of developing important comorbidities such as MetS and T2DM. Recent studies evidence that gut microbiota may be a contributing factor; however, only few studies exist in school-age children. Understanding the potential role of gut microbiota in MetS and T2DM pathophysiology from early stages of life might contribute to innovative gut microbiome-based interventions that may improve public health. The main objective of the present study was to characterize and compare gut bacteria of T2DM and MetS children against control subjects and determine which microorganisms might be potentially related with cardiometabolic risk factors to propose gut microbial biomarkers that characterize these conditions for future development of pre-diagnostic tools. RESULTS: Stool samples from 21 children with T2DM, 25 with MetS, and 20 controls (n = 66) were collected and processed to conduct 16S rDNA gene sequencing. α- and ß-diversity were studied to detect microbial differences among studied groups. Spearman correlation was used to analyze possible associations between gut microbiota and cardiometabolic risk factors, and linear discriminant analyses (LDA) were conducted to determine potential gut bacterial biomarkers. T2DM and MetS showed significant changes in their gut microbiota at genus and family level. Read relative abundance of Faecalibacterium and Oscillospora was significantly higher in MetS and an increasing trend of Prevotella and Dorea was observed from the control group towards T2DM. Positive correlations were found between Prevotella, Dorea, Faecalibacterium, and Lactobacillus with hypertension, abdominal obesity, high glucose levels, and high triglyceride levels. LDA demonstrated the relevance of studying least abundant microbial communities to find specific microbial communities that were characteristic of each studied health condition. CONCLUSIONS: Gut microbiota was different at family and genus taxonomic levels among controls, MetS, and T2DM study groups within children from 7 to 17 years old, and some communities seemed to be correlated with relevant subjects' metadata. LDA helped to find potential microbial biomarkers, providing new insights regarding pediatric gut microbiota and its possible use in the future development of gut microbiome-based predictive algorithms.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Metabolic Syndrome , Pediatric Obesity , Humans , Child , Adolescent , Bacteria/genetics , Biomarkers , RNA, Ribosomal, 16S/genetics
7.
Waste Manag Res ; 41(7): 1227-1237, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36843356

ABSTRACT

Most of the municipal solid waste (MSW) generated in the Latin America (LATAM) region is currently disposed of in landfills and dumpsites, which results in many negative environmental impacts. Mechanical biological treatment (MBT) is a strategy that combines the mechanical separation of recoverable materials with the biological stabilization of organic matter. MBT plants have proven to be a good alternative for the management of MSW and have been successfully implemented in developed countries for more than 30 years. However, the efficient introduction of these facilities in developing countries, such as those in the LATAM region, requires further feasibility studies. Therefore, this mini review seeks to offer significant insights into the main challenges that must be overcome to facilitate the implementation and operation of MBT plants, considering the unique technological, sociocultural, economic and political context of the LATAM region, through a comparison of the reported experiences of MBT plants in more developed countries with those in the LATAM region. The analysis herein indicates that key actions for the successful operation of MBT plants in the LATAM region include both the implementation of source separation as well as selective collection practices. Moreover, this work shows that other factors, like the establishment of valorization markets with safe working conditions for informal collectors, the development of intermunicipal cooperation schemes and the enforcement of strong regulatory frameworks for waste disposal specifications, are important contextual factors that have allowed the efficient operation of MBT plants in developed countries. Although the implementation of many of these practices will be challenging, such measures are necessary to increase the sustainability of MSW treatment practices in the LATAM region.


Subject(s)
Refuse Disposal , Waste Management , Solid Waste/analysis , Developed Countries , Latin America , Refuse Disposal/methods , Waste Disposal Facilities , Waste Management/methods
8.
Front Microbiol ; 13: 1037626, 2022.
Article in English | MEDLINE | ID: mdl-36532453

ABSTRACT

Lake Cajititlán is a subtropical and endorheic lake, which is heavily impacted by nutrient pollution. Agricultural runoff and poorly treated wastewater have entered this reservoir at alarming rates during past rainy seasons, causing the cultural eutrophication of this body of water and resulting in several massive fish kill events. In this study, shotgun metagenomic sequencing was used to examine the taxonomic and functional structure of microbial communities in Lake Cajititlán during the rainy season. Several water quality features and their interactions with microbial communities were also assessed to identify the major factors affecting the water quality and biota, specifically fish species. According to current water quality regulations, most of the physicochemical variables analyzed (dissolved oxygen, pH, Secchi disk, NH4 +, NO3 -, blue-green algae, total phosphorus, and chlorophyll-a) were outside of the permissible limits. Planktothrix agardhii and Microcystis aeruginosa were the most abundant phytoplankton species, and the dominant bacterial genera were Pseudomonas, Streptomyces, and Flavobacterium, with Pseudomonas fluorescens, Stenotrophomonas maltophilia, and Aeromonas veronii representing the most abundant bacterial species. All of these microorganisms have been reported to be potentially harmful to fish, and the latter three (P. fluorescens, S. maltophilia, A. veronii) also contain genes associated with pathogenicity in fish mortality (fur, luxS, aer, act, aha, exu, lip, ser). Genetic evidence from the microbial communities analyzed herein reveals that anthropogenic sources of nutrients in the lake altered genes involved in nitrogen, phosphorus, sulfur, and carbon metabolism, mainly at the beginning of the rainy season. These findings suggest that abiotic factors influence the structure of the microbial communities, along with the major biogeochemical cycles of Lake Cajititlán, resulting in temporal variations and an excess of microorganisms that can thrive in high-nutrient and low-oxygen environments. After reviewing the literature, this appears to be the first study that focuses on characterizing the water quality of a subtropical hypereutrophic lake through associations between physicochemical variables and shotgun metagenomic data. In addition, there are few studies that have coupled the metabolism of aquatic ecosystems with nutrient cycles.

9.
Plant Foods Hum Nutr ; 77(2): 212-219, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35461373

ABSTRACT

There is great interest in the search for new alternatives to antimicrobial drugs, and the use of prebiotics and probiotics is a promising approach to this problem. This study aimed to assess the effect of inulin-type fructans, used in synbiotic combinations with Lactobacillus paracasei or Lactobacillus plantarum, on the production of short-chain fatty acids and antimicrobial activity against Candida albicans. The inhibition assay using the L. paracasei and L. plantarum supernatants resulting from the metabolization of inulin-type fructans displayed growth inhibition and antibiofilm formation against C. albicans. Inhibition occurred at concentrations of 12.5, 25, and 50% of the L. paracasei supernatant and at a concentration of 50% of the L. plantarum supernatant. The analysis of short-chain fatty acids by gas chromatography showed that lactic acid was the dominating produced metabolite. However, acetic, propionic, and butyric acids were also detected in supernatants from both probiotics. Therefore, the synbiotic formulation of L. paracasei or L. plantarum in the presence of inulin-type fructans constitutes with anticandidal effect is a possible option to produce antifungal drugs or antimicrobial compounds.


Subject(s)
Probiotics , Synbiotics , Anti-Bacterial Agents/pharmacology , Biofilms , Candida albicans/metabolism , Fatty Acids, Volatile/metabolism , Fructans/pharmacology , Inulin/pharmacology , Lactobacillus , Prebiotics , Probiotics/pharmacology
10.
Front Microbiol ; 13: 832477, 2022.
Article in English | MEDLINE | ID: mdl-35479621

ABSTRACT

Lakes in subtropical regions are highly susceptible to eutrophication due to the heavy rainfall, which causes significant runoff of pollutants (e.g., nutrients) to reach surface waters, altering the water quality and influencing the microbial communities that regulate the biogeochemical cycles within these ecosystems. Lake Cajititlán is a shallow, subtropical, and endorheic lake in western Mexico. Nutrient pollution from agricultural activity and wastewater discharge have affected the lake's water quality, leading the reservoir to a hypereutrophic state, resulting in episodes of fish mortality during the rainy season. This study investigated the temporal dynamics of bacterial communities within Lake Cajititlán and their genes associated with the nitrogen, phosphorus, sulfur, and carbon biogeochemical cycles during the rainy season, as well as the influences of physicochemical and environmental variables on such dynamics. Significant temporal variations were observed in the composition of bacterial communities, of which Flavobacterium and Pseudomonas were the dominant genera. The climatological parameters that were most correlated with the bacterial communities and their functional profiles were pH, DO, ORP, turbidity, TN, EC, NH4 +, and NO3 -. The bacterial communities displayed variations in their functional composition for nitrogen, phosphorus, and sulfur metabolisms during the sampling months. The bacterial communities within the lake are highly susceptible to nutrient loads and low DO levels during the rainy season. Bacterial communities had a higher relative abundance of genes associated with denitrification, nitrogen fixation, assimilatory sulfate reduction, cysteine, SOX system, and all phosphorus metabolic pathways. The results obtained here enrich our understanding of the bidirectional interactions between bacterial communities and major biogeochemical processes in eutrophic subtropical lakes.

11.
J Environ Manage ; 308: 114612, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35149401

ABSTRACT

The intensive livestock activities that are carried out worldwide to feed the growing human population have led to significant environmental problems, such as soil degradation, surface and groundwater pollution. Livestock wastewater (LW) contains high loads of organic matter, nitrogen (N) and phosphorus (P). These compounds can promote cultural eutrophication of water bodies and pose environmental and human hazards. Therefore, humanity faces an enormous challenge to adequately treat LW and avoid the overexploitation of natural resources. This can be accomplished through circular bioeconomy approaches, which aim to achieve sustainable production using biological resources, such as LW, as feedstock. Circular bioeconomy uses innovative processes to produce biomaterials and bioenergy, while lowering the consumption of virgin resources. Microalgae-based wastewater treatment (MbWT) has recently received special attention due to its low energy demand, the robust capacity of microalgae to grow under different environmental conditions and the possibility to recover and transform wastewater nutrients into highly valuable bioactive compounds. Some of the high-value products that may be obtained through MbWT are biomass and pigments for human food and animal feed, nutraceuticals, biofuels, polyunsaturated fatty acids, carotenoids, phycobiliproteins and fertilizers. This article reviews recent advances in MbWT of LW (including swine, cattle and poultry wastewater). Additionally, the most significant factors affecting nutrient removal and biomass productivity in MbWT are addressed, including: (1) microbiological aspects, such as the microalgae strain used for MbWT and the interactions between microbial populations; (2) physical parameters, such as temperature, light intensity and photoperiods; and (3) chemical parameters, such as the C/N ratio, pH and the presence of inhibitory compounds. Finally, different strategies to enhance nutrient removal and biomass productivity, such as acclimation, UV mutagenesis and multiple microalgae culture stages (including monocultures and multicultures) are discussed.


Subject(s)
Environmental Pollutants , Microalgae , Water Purification , Animals , Biofuels , Biomass , Cattle , Livestock , Nitrogen , Swine , Wastewater
12.
Foods ; 10(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34681324

ABSTRACT

Isolation and functional characterization of microorganisms are relevant steps for generating starter cultures with functional properties, and more recently, those related to improving mental health. Milk kefir grains have been recently investigated as a source of health-related strains. This study focused on the evaluation of microorganisms from artisanal Mexican milk kefir grains regarding probiotic properties, in vitro fermentability with commercial prebiotics (lactulose, inulin, and citrus pectin), and γ-aminobutyric acid (GABA)-producing capacity. Microorganisms were identified belonging to genera Lactococcus, Lactobacillus, Leuconostoc, and Kluyveromyces. The probiotic properties were assessed by aggregation abilities, antimicrobial activity, antibiotic susceptibility, and resistance to in vitro gastrointestinal digestion, showing a good performance compared with commercial probiotics. Most of isolates maintained a concentration above 6 log colony forming units/mL after the intestinal phase. Specific isolates of Kluyveromyces (BIOTEC009 and BIOTEC010), Leuconostoc (BIOTEC011 and BIOTEC012), and Lactobacillus (BIOTEC014 and BIOTEC15) showed a high fermentability in media supplemented with commercial prebiotics. The capacity to produce GABA was classified as medium for L. lactis BIOTEC006, BIOTEC007, and BIOTEC008; K. lactis BIOTEC009; L. pseudomesenteroides BIOTEC012; and L. kefiri BIOTEC014, and comparable to that obtained for commercial probiotics. Finally, a multivariate approach was performed, allowing the grouping of 2-5 clusters of microorganisms that could be further considered new promising cultures for functional dairy food applications.

13.
Front Microbiol ; 12: 617151, 2021.
Article in English | MEDLINE | ID: mdl-33767675

ABSTRACT

Lake Cajititlán is a small, shallow, subtropical lake located in an endorheic basin in western Mexico. It is characterized by a strong seasonality of climate with pronounced wet and dry seasons and has been classified as a hypereutrophic lake. This eutrophication was driven by improperly treated sewage discharges from four municipal wastewater treatment plants (WWTPs) and by excessive agricultural activities, including the overuse of fertilizers that reach the lake through surface runoff during the rainy season. This nutrient rich runoff has caused algal blooms, which have led to anoxic or hypoxic conditions, resulting in large-scale fish deaths that have occurred during or immediately after the rainy season. This study investigated the changes in the phytoplankton community in Lake Cajititlán during the rainy season and the association between these changes and the physicochemical water quality and environmental parameters measured in the lake's basin. Planktothrix and Cylindrospermopsis were the dominant genera of the cyanobacterial community, while the Chlorophyceae, Chrysophyceae, and Trebouxiophyceae classes dominated the microalgae community. However, the results showed a significant temporal shift in the phytoplankton communities in Lake Cajititlán induced by the rainy season. The findings of this study suggest that significant climatic variations cause high seasonal surface runoff and rapid changes in the water quality (Chlorophyll-a, DO, NH4 +, and NO3 -) and in variations in the composition of the phytoplankton community. Finally, an alternation between phosphorus and nitrogen limitation was observed in Lake Cajititlán during the rainy season, clearly correlating to the presence of Planktothrix when the lake was limited by phosphorus and to the presence of Cylindrospermopsis when the lake was limited by nitrogen. The evidence presented in this study supports the idea that the death of fish in Lake Cajititlán could be mainly caused by anoxia, caused by rapid changes in water quality during the rainy season. Based on our review of the literature, this is the first study on the phytoplankton community in a subtropical lake during the rainy season using high throughput 16S rRNA and 18S rRNA amplicon sequencing.

14.
J Hum Nutr Diet ; 34(4): 645-655, 2021 08.
Article in English | MEDLINE | ID: mdl-33586805

ABSTRACT

BACKGROUND: The fungal community of the gastrointestinal tract has recently become of interest, and knowledge of its relationship with the development of obesity is scarce. The present study aimed to evaluate the cultivable fungal fraction from the microbiota and to analyze its relationship with obesity. METHODS: Samples were taken from 99 participants with normal weight, overweight and obesity (n = 31, 34 and 34, respectively) and were cultivated in selective medium, and the cultivable yeasts were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anthropometric and biochemical measures were also evaluated. RESULTS: Eutrophic, overweight and obese groups presented concentrations of 1.6, 2.16 and 2.19 log10  colony-forming units g-1 yeast, respectively. Ascomycota and Basidiomycota were the two identified phyla. At the genus level, Candida spp. showed a relatively high prevalence, and 10 different species were detected: Candida glabrata, Candida orthopsilosis, Candida lambica, Candida kefyr, Candida albicans, Candida krusei, Candida valida, Candida parapsilosis, Candida utilis and Candida humilis (with relative abundances of 71.72%, 5.05%, 21.21%, 6.06%, 29.29%, 27.27%, 8.08%, 16.16%, 1.01% and 2.02%, respectively). CONCLUSIONS: The obese group presented a higher prevalence of Candida albicans. Furthermore, Candida albicans, Candida kefyr and Rhodotorula mucilaginosa showed a high positive correlation with obesity, weight gain and fat mass and showed a negative correlation with high-density lipoprotein and lean mass, parameters related to weight loss.


Subject(s)
Fungi/classification , Fungi/isolation & purification , Gastrointestinal Tract/microbiology , Mycobiome , Obesity/microbiology , Overweight/microbiology , Adult , Candida/classification , Candida/isolation & purification , Colony Count, Microbial , Discriminant Analysis , Female , Humans , Male , Rhodotorula/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Yeasts/classification , Yeasts/isolation & purification
15.
Front Microbiol ; 11: 521146, 2020.
Article in English | MEDLINE | ID: mdl-33042046

ABSTRACT

This study investigated the prevalence, serovar distribution, antimicrobial resistance, and pulsed field gel electrophoresis (PFGE) typing of Salmonella enterica isolated from Lake Zapotlán, Jalisco, Mexico. Additionally, the association of the presence of Salmonella with physicochemical and environmental parameters was analyzed using Pearson correlation analysis and principal component analysis (PCA). Salmonella spp. were identified in 19 of 63 (30.15%) samples. The prevalence of Salmonella was positively correlated with air temperature, electrical conductivity, pH, and dissolved oxygen and negatively correlated with relative humidity, water temperature, turbidity, and precipitation. The predominant serotype identified was Agona (68.48%), followed by Weltevreden (5.26%), Typhimurium (5.26%), and serogroup B (21.05%). Overall, the highest detected antimicrobial resistance was toward colistin (73.68%), followed by sulfamethoxazole (63.15%), tetracycline (57.89%), nalidixic acid (52.63%), and trimethoprim (52.63%). All Salmonella strains were genetically diverse, with a total of 11 XbaI and four BlnI profiles on PFGE. The use of these two enzymes allowed differentiate strains of Salmonella of the same serotype. The results obtained in this study contribute to a better understanding of the Salmonella spp. ecology in an endorheic subtropical lake and provide information for decision makers to propose and implement effective strategies to control point and non-point sources of pathogen contamination.

16.
Environ Monit Assess ; 192(5): 296, 2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32307612

ABSTRACT

A Water Quality Index (WQI) is a formulation that enables the estimation of the overall quality of a water body based on significant parameters. One example of this is the well-known and widely accepted NSF-WQI, which is frequently used to assess chemical, physical, and microbiologic features of waterbodies in temperate latitudes. In this work, a well-structured method, completely based on multivariate statistical methods and historical data distributions, was used to develop an ecosystem specific water quality index (ES-WQI). Lake Cajititlán, a subtropical Mexican lake located in Tlajomulco de Zúñiga, was selected as a case of study because it is an endorheic shallow lake that shows signs of high levels of eutrophication due to anthropogenic contamination. As a result of the contamination, and its sensibility to changes in the water level, it undergoes important changes in its water features, such as turbidity and intense green color, and experiences massive events of fish mortality. The proposed ES-WQI describes the changes in water quality over the year well and correlates with the capability of the lake to support aquatic life, as the lowest estimated values coincide with the biggest events of massive fish mortality in the lake. Furthermore, the ES-WQI clearly differentiates between typical cyclic behaviors and actual deteriorating trends and is capable of tracking incremental changes all over the range of the possible concentration values of the water quality parameters.


Subject(s)
Environmental Monitoring , Lakes , Water Quality , Animals , Ecosystem , Mexico
17.
Environ Monit Assess ; 192(1): 5, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31797222

ABSTRACT

Lake Cajititlán is a shallow body of water located in an endorheic basin in western Mexico. This lake receives excess fertilizer runoff from agriculture and approximately 2.3 Hm3 per year of poorly treated wastewater from three municipal treatment plants. Thirteen water quality parameters were monitored at five sampling points within the lake over 9 years. The objective of this work was to characterize the spatial and temporal variations of the water quality and to identify the sources of data variability in order to assess the influence and the impact of different natural and anthropogenic processes. One-way ANOVA tests, principal component analysis (PCA), cluster analysis (CA), and discriminant analysis (DA) were implemented. The one-way ANOVA showed that biochemical oxygen demand and pH present statistically significant spatial variations and that alkalinity, total chloride, conductivity, chemical oxygen demand, total hardness, ammonia, pH, total dissolved solids, and temperature present statistically significant temporal variations. PCA results explained both natural and anthropogenic processes and their relationship with water quality data. The CA results suggested there is no significant spatial variation in the water quality of the lake because of lake mixing caused by wind. The most significant parameters for spatial variations were pH, NO3-, and NO2-, consistent with the configuration of point and nonpoint sources that affect the lake's water quality. The temporal DA results suggested that conductivity, hardness, NO2-, pH, and temperature were the most significant parameters to discriminate between seasons. The temporal behavior of these parameters was associated with the transport pathways of seasonal contaminants.


Subject(s)
Environmental Monitoring , Lakes/chemistry , Multivariate Analysis , Water Quality , Cluster Analysis , Discriminant Analysis , Environmental Monitoring/methods , Mexico , Principal Component Analysis , Seasons , Water Pollutants, Chemical/analysis
18.
Environ Monit Assess ; 191(6): 396, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31123902

ABSTRACT

Lake Cajititlán is an endorheic tropical lake located in the state of Jalisco, Mexico, which has suffered the consequences of high levels of eutrophication. This study assessed the presence of heavy metals and metalloids in Lake Cajititlán to ascertain possible risks to its aquatic biota and the environment. Eleven monitoring sites were selected throughout the lake; from each site, one sample was taken from the sediments and another from the sediment-water interface by using an Ekman dredger and a Van Dorn bottle, respectively. The measured metals in each sample were As, Cd, Cr, Hg, Pb, Zn, Cu, Ni, Fe, Mn, and Al. The results showed the following sequence of heavy metal concentrations Al > Fe > Mn > Zn > Cu > Cr, wherein Al had the highest average concentration and Cr had the lowest. As, Cd, Hg, and Pb were practically undetectable. Because the predominant rock in the lake basin is volcanic tuff and the soil is vertisol, the high quantities of Al and Fe suggest the weathering of the basin's minerals. The analyses of the sediment-water samples contained small amounts of dissolved Al, Fe, and Mn. According to the Håkanson equations with Hg, Cd, As, Cu, Pb, Cr, and Zn, the calculations of the contamination degree and ecological risk revealed that the presence of metals and metalloids does not present a potential risk to the aquatic biota; nonetheless, the water is not suitable for local human consumption due to an unrelated factor associated with nutrient and bacteriological contamination. The results show that heavy metals in the sediments were dispersed throughout the lake mostly because of the weathering of minerals from the local basin and not because of the punctual discharges of the pollutants from the municipal wastewater treatment plants (WWTPs). However, to ensure that the small amounts of dissolved metals (Al, Fe, and Mn) do not affect the aquatic biota, the fish species and phytoplankton need to be internally analyzed.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Animals , Ecology , Eutrophication , Fishes , Humans , Lakes/analysis , Mexico , Risk Assessment/methods , Soil/chemistry , Wastewater/analysis , Water/analysis
19.
Environ Monit Assess ; 191(2): 92, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30671653

ABSTRACT

Lake Cajititlán is a shallow water body located in an endorheic basin in western Mexico at 1551 m a.s.l. The surface area is 1744 ha, maximum storage volume achieved is 70.89 Hm3, and maximum depth is 5.4 m at its maximum capacity. The lake has experienced significant changes in its level because of drought conditions in recent years. Because the lake has shallow features and is settled in a closed basin with rapid population growth, the lake water has suffered severe anthropogenic contamination causing damages in its intrinsic esthetic, social, environmental, and economic values.


Subject(s)
Lakes/chemistry , Water Quality , Chlorophyll/analysis , Cyanobacteria/growth & development , Environmental Monitoring , Mexico , Oxygen/analysis , Photosynthesis , Water Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...